forked from mbandrews/MLAnalyzer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
convert_Tree2Dask_EBcropsv2_single.py
208 lines (185 loc) · 7.33 KB
/
convert_Tree2Dask_EBcropsv2_single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import numpy as np
import ROOT
from root_numpy import tree2array
from dask.delayed import delayed
import dask.array as da
eosDir='/eos/uscms/store/user/mba2012/IMGs/SinglePi0_scan'
decays = ['SinglePi0Pt60_pythia8_2016_25ns_Moriond17MC_PoissonOOTPU_m800']
chunk_size_ = 250
scale = 1.
@delayed
def load_X(tree, start_, stop_, branches_, readouts, scale):
X = tree2array(tree, start=start_, stop=stop_, branches=branches_)
# Convert the object array X to a multidim array:
# 1: for each event x in X, concatenate the object columns (branches) into a flat array of shape (readouts*branches)
# 2: reshape the flat array into a stacked array: (branches, readouts)
# 3: embed each stacked array as a single row entry in a list via list comprehension
# 4: convert this list into an array with shape (events, branches, readouts)
X = np.array([np.concatenate(x).reshape(len(branches_),readouts[0]*readouts[1]) for x in X])
#print "X.shape:",X.shape
X = X.reshape((-1,len(branches_),readouts[0],readouts[1]))
X = np.transpose(X, [0,2,3,1])
# Rescale
X /= scale
return X
@delayed
def load_single(tree, start_, stop_, branches_):
X = tree2array(tree, start=start_, stop=stop_, branches=branches_)
if len(branches_) > 1:
X = np.array([np.concatenate(x).reshape(len(branches_),1) for x in X])
X = X.reshape((-1,len(branches_)))
else:
X = np.array([x[0] for x in X])
return X
for j,decay in enumerate(decays):
if j == 1:
pass
continue
#tfile_str = 'output.root'
tfile_str = '%s/%s_IMG.root'%(eosDir,decay)
tfile = ROOT.TFile(tfile_str)
tree = tfile.Get('fevt/RHTree')
nevts = tree.GetEntries()
neff = (nevts//1000)*1000
#neff = int(nevts)
neff = 96000
chunk_size = chunk_size_
#chunk_size = int(nevts)
if neff > nevts:
neff = int(nevts)
chunk_size = int(nevts)
#neff = 1000
#neff = 233000
print " >> Doing decay:", decay
print " >> Input file:", tfile_str
print " >> Total events:", nevts
print " >> Effective events:", neff
# EB
readouts = [170,360]
branches = ["EB_energy"]
X = da.concatenate([\
da.from_delayed(\
load_X(tree,i,i+chunk_size, branches, readouts, scale),\
shape=(chunk_size, readouts[0], readouts[1], len(branches)),\
dtype=np.float32)\
for i in range(0,neff,chunk_size)])
print " >> Expected shape:", X.shape
# SC0
readouts = [32,32]
branches = ["SC_energy0"]
X_crop0 = da.concatenate([\
da.from_delayed(\
load_X(tree,i,i+chunk_size, branches, readouts, scale),\
shape=(chunk_size, readouts[0], readouts[1], len(branches)),\
dtype=np.float32)\
for i in range(0,neff,chunk_size)])
print " >> Expected shape:", X_crop0.shape
# SC0
readouts = [32,32]
branches = ["SC_energyT0", "SC_energyZ0"]
X_crop_stack0 = da.concatenate([\
da.from_delayed(\
load_X(tree,i,i+chunk_size, branches, readouts, scale),\
shape=(chunk_size, readouts[0], readouts[1], len(branches)),\
dtype=np.float32)\
for i in range(0,neff,chunk_size)])
print " >> Expected shape:", X_crop_stack0.shape
# SC_mass0
branches = ["SC_mass0"]
y_mass0 = da.concatenate([\
da.from_delayed(\
load_single(tree,i,i+chunk_size, branches),\
shape=(chunk_size,),\
dtype=np.float32)\
for i in range(0,neff,chunk_size)])
print " >> Expected shape:", y_mass0.shape
# SC_pT0
branches = ["SC_pT0"]
y_pT0 = da.concatenate([\
da.from_delayed(\
load_single(tree,i,i+chunk_size, branches),\
shape=(chunk_size,),\
dtype=np.float32)\
for i in range(0,neff,chunk_size)])
print " >> Expected shape:", y_pT0.shape
# SC_DR0
branches = ["SC_DR0"]
y_DR0 = da.concatenate([\
da.from_delayed(\
load_single(tree,i,i+chunk_size, branches),\
shape=(chunk_size,),\
dtype=np.float32)\
for i in range(0,neff,chunk_size)])
print " >> Expected shape:", y_DR0.shape
# pho_pT0
branches = ["pho_pT0"]
pho_pT0 = da.concatenate([\
da.from_delayed(\
load_single(tree,i,i+chunk_size, branches),\
shape=(chunk_size,),\
dtype=np.float32)\
for i in range(0,neff,chunk_size)])
print " >> Expected shape:", pho_pT0.shape
# pho_E0
branches = ["pho_E0"]
pho_E0 = da.concatenate([\
da.from_delayed(\
load_single(tree,i,i+chunk_size, branches),\
shape=(chunk_size,),\
dtype=np.float32)\
for i in range(0,neff,chunk_size)])
print " >> Expected shape:", pho_E0.shape
# pho_eta0
branches = ["pho_eta0"]
pho_eta0 = da.concatenate([\
da.from_delayed(\
load_single(tree,i,i+chunk_size, branches),\
shape=(chunk_size,),\
dtype=np.float32)\
for i in range(0,neff,chunk_size)])
print " >> Expected shape:", pho_eta0.shape
# eventId
branches = ["eventId"]
eventId = da.concatenate([\
da.from_delayed(\
load_single(tree,i,i+chunk_size, branches),\
shape=(chunk_size,),\
dtype=np.int32)\
for i in range(0,neff,chunk_size)])
print " >> Expected shape:", eventId.shape
## Kinematics
#branches = ["pho_pT", "pho_E", "pho_eta", "pho_phi"]
#X_p4 = da.concatenate([\
# da.from_delayed(\
# load_single(tree,i,i+chunk_size, branches),\
# shape=(chunk_size,len(branches)),\
# dtype=np.float32)\
# for i in range(0,neff,chunk_size)])
#print " >> Expected shape:", X_p4.shape
# Class label
label = j
label = 1
print " >> Class label:",label
y = da.from_array(\
np.full(X.shape[0], label, dtype=np.float32),\
chunks=(chunk_size,))
file_out_str = "%s/%s_IMG_RH%d_n%dk.hdf5"%(eosDir,decay,int(scale),neff//1000.)
#file_out_str = "test.hdf5"
print " >> Writing to:", file_out_str
#da.to_hdf5(file_out_str, {'/X': X, '/y': y, 'eventId': eventId, 'X_crop0': X_crop0, 'X_crop1': X_crop1}, compression='lzf')
da.to_hdf5(file_out_str, {
#'/X': X,
'/y': y,
#'eventId': eventId,
'X_crop0': X_crop0,
'X_crop_stack0': X_crop_stack0,
#'X_crop1': X_crop1
#'X_p4': X_p4
'y_mass': y_mass0,
'y_pT': y_pT0,
#'y_DR': y_DR0,
#'pho_pT0': pho_pT0,
#'pho_E0': pho_E0,
#'pho_eta0': pho_eta0
}, compression='lzf')
print " >> Done.\n"