forked from trgaleev/AlleleSeq2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalleledb_alleleseqBetabinomial.R
executable file
·211 lines (165 loc) · 6.78 KB
/
alleledb_alleleseqBetabinomial.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#20170212 cjieming/alleleDB alleledb_v2.0 script
#Chen J et al. (2016). Nat Commun. 7:11101
# with minor modifications to incorporate into the pipeline
## allow cmd line arguments
args=(commandArgs(TRUE))
#folder=args[1]
if (length(args)>5){
FDR.thresh = as.numeric(args[6])
}else{
FDR.thresh = 0.05
}
## start script here
#library(VGAM)
library(VGAM, lib.loc="~/R_libs/")
### data
data1 = read.table(args[1], header=T, stringsAsFactors=F, comment.char="%", check.names=F)
#print(head(data1))
#filename2 = "betabinomial/b_chosen.grad.txt"
filename2 = paste0(args[2],'/',"b_chosen.grad.txt")
data2 = read.table(filename2, header=T, stringsAsFactors=F)
## parameters
p=0.5 ## binomial null p
## finding the second highest value for the SNP
cACGT = data.frame(cA=data1$cA,cC=data1$cC,cG=data1$cG,cT=data1$cT)
lower = apply(cACGT,1,function(x) sort(x, partial=3)[3])
## find total num = highest + second highest
higher = apply(cACGT,1,max)
total = higher+lower
## empirical tests
b = data2$b.choice
## VGAM says that "the value 0 is sometimes supported (if so then it corresponds to the usual binomial distribution)"
## to prevent the code from breaking, a pseudo-zero number is added
## and it's essentially the same as the binomial distribution up to 7 dp
if(b==0){ b=1e-10 }
p.bin = apply(data.frame(2 * mapply(pbinom,lower,total,p)),1,function(x) min(x,1))
p.betabin = apply(data.frame(2 * mapply(pbetabinom,lower,total,p,b)),1,function(x) min(x,1))
data1$p.betabin = p.betabin
## simulations
step = 0.0001
p.thresh = data.frame( c(seq(0,0.01,by=0.001), seq(0.01,0.1,by=0.01)[-1], seq(0.1,1,by=0.1)[-1]) ) #
cutoff <- function(x,y) sum(y<=x)
## calc fp from null and empirical counts
fp <- function(w,p,p.thresh,distrib="binomial",b=0)
{
## doing the distribution; as.integer converts table entities to integers
a=lapply(as.integer(w[,1]),function(x) seq(0,x))
if(distrib == "binomial")
{
b = lapply(a,function(x) apply(as.data.frame(2*pbinom(x,max(x),p)),1,function(x) min(x,1)))
}
else if(distrib == "betabinomial")
{
b = lapply(a,function(x) apply(as.data.frame(2*pbetabinom(x,max(x),p,b)),1,function(x) min(x,1)))
}
## find which ones are below threshold u
d = lapply(b,function(x) x<=p.thresh)
## weight them by actual counts
e = mapply(function(x,y,z) x*y*z, d, b, w[,2])
## sum up
f = sapply(e,max)
g = sum(f)
return(g)
}
# table of empirical counts
w = as.data.frame(table(total), stringsAsFactors=F)
w = w[as.numeric(w[,1]) >=6,]
# FP
fp.binomial = apply(p.thresh,1,function(x) fp(w,p,x,"binomial"))
fp.binomial = as.data.frame(cbind(p.thresh,fp.binomial))
colnames(fp.binomial) = c("pval","FP.bin")
fp.betabinomial = apply(p.thresh,1,function(x) fp(w,p,x,"betabinomial",b))
fp.betabinomial = as.data.frame(cbind(p.thresh,fp.betabinomial))
colnames(fp.betabinomial) = c("pval","FP.betabin")
## FDR.txt
tp.bin = apply(p.thresh,1,cutoff,y=p.bin)+1
tp.betabin = apply(p.thresh,1,cutoff,y=p.betabin)+1
fdr.bin = fp.binomial[,2] / tp.bin
fdr.betabin = fp.betabinomial[,2] / tp.betabin
p.choice.bin = max(p.thresh[,1][fdr.bin<=FDR.thresh])
p.choice.betabin = max(p.thresh[,1][fdr.betabin<=FDR.thresh])
fdr.choice.bin = max(fdr.bin[fdr.bin<=FDR.thresh])
fdr.choice.betabin = max(fdr.betabin[fdr.betabin<=FDR.thresh])
## bisection method to find p value
bisect <- function(p,p.sim,p.choice,fdr,fdr.threshold,by,distrib="binomial",b=0,w,p.thresh)
{
p.fdr.e = matrix(0,100,3)
e.prev = 10
flag = 3
ctr = 1
p.fdr.e[ctr,1] = p.choice
p.fdr.e[ctr,2] = fdr
p.fdr.e[ctr,3] = e.prev
while(flag)
{
start = max(0,(p.choice - by/2))
end = p.choice + by/2
by = by/4
if(start==0){ start = 5e-4 } ## do not make it 0
range = seq(start,end,by)
for (i in range)
{
tp = cutoff(i,p)
if(distrib == "binomial")
{
fp = fp(w,p.thresh,i,"binomial")
}
else if(distrib == "betabinomial")
{
fp = fp(w,p.thresh,i,"betabinomial",b)
}
fdr.ind = fp/tp
e.curr = fdr.threshold - fdr.ind
ctr = ctr + 1
p.fdr.e[ctr,1] = i
p.fdr.e[ctr,2] = fdr.ind
p.fdr.e[ctr,3] = e.curr
e.prev = p.fdr.e[(ctr-1),3]
p.choice = i
print(paste("i=",i,"start|end|by",start,end,by))
print(paste("fdr.threshold=",fdr.threshold,"fdr.ind=",fdr.ind,"e.curr=",e.curr)) ##debug
print(paste("fp=",fp,"tp=",tp))
if(e.curr < 0){ break }
# print(paste(start,"|",end,"|",i,"|",ctr,"|",by)) ##debug
# print(paste("fdr.thresh=",fdr.threshold,"|fdr=",fdr.ind,"|fdrmatrix=",p.fdr.e[(ctr-1),2],
# "e.curr=",p.fdr.e[ctr,3],"|e.prev=",p.fdr.e[ctr-1,3])) ##debug
}
# print(paste(start,"|",end,"|",i,"|",ctr,"|",by)) ##debug
# print(paste("fdr.thresh=",fdr.threshold,"|fdr=",p.fdr.e[ctr,2],"|fdrprev=",p.fdr.e[ctr-1,2]))
# break##debug
# print(paste("tp=",tp,"|fp=",fp)) ##debug
# print(paste("e.curr=",e.curr,"|e.prev=",e.prev)) ##debug
if(signif(p.fdr.e[ctr-1,3],3) == signif(p.fdr.e[ctr,3],3)){ flag = 0 }
}
return(p.fdr.e)
}
p.choice.bin.1 = as.data.frame(bisect(p.bin,fp.bin[,2],p.choice.bin,fdr.choice.bin,FDR.thresh,step,"binomial",b=0,w,p))
p.choice.betabin.1 = as.data.frame(bisect(p.betabin,fp.betabinomial[,2],p.choice.betabin,fdr.choice.betabin,FDR.thresh,step,"betabinomial",b,w,p))
p.choice.bin.1 = p.choice.bin.1[p.choice.bin.1[,3]>0,]
p.choice.bin.2 = p.choice.bin.1[nrow(p.choice.bin.1),1]
p.choice.betabin.1 = p.choice.betabin.1[p.choice.betabin.1[,3]>0,]
p.choice.betabin.2 = p.choice.betabin.1[nrow(p.choice.betabin.1),1]
## formatting FDR.txt
FDR.txt = data.frame(cbind(p.thresh,tp.bin,fp.binomial[,2],fdr.bin,
tp.betabin,fp.betabinomial[,2],fdr.betabin))
colnames(FDR.txt) <- c("pval","P.bin","FP.bin","FDR.bin",
"P.betabin","FP.betabin","FDR.betabin")
FDR.txt[is.na(FDR.txt)] <- 0
FDR.txt[FDR.txt == "Inf"] <- 0
FDR.txt = FDR.txt[-nrow(FDR.txt),]
## take in counts.txt and filter by p.betabin and cnv
#interestingHets.betabinom = data1[data1$p.betabin<=p.choice.betabin,]
interestingHets.betabinom = data1[(data1$p.betabin<=p.choice.betabin.2) & (data1$cnv>=0.5 & data1$cnv<=1.5),]
#print (head(interestingHets.betabinom))
## printing files
write.table(data1,file=args[3], sep="\t",
row.names=FALSE,quote=FALSE)
write.table(interestingHets.betabinom,file=args[4], sep="\t",
row.names=FALSE,quote=FALSE)
write.table(FDR.txt,file=args[5],sep="\t",row.names=FALSE,quote=FALSE)
write(paste("FDR.threshold =",FDR.thresh),
file=args[5],append=TRUE)
write(rbind(paste("p.choice.bin.old =",p.choice.bin),paste("p.choice.betabin.old =",p.choice.betabin)),
file=args[5],append=TRUE)
write(rbind(paste("p.choice.bin =",p.choice.bin.2),paste("p.choice.betabin =",p.choice.betabin.2)),
file=args[5],append=TRUE)