forked from mseitzer/pytorch-fid
-
Notifications
You must be signed in to change notification settings - Fork 25
/
kid_score.py
executable file
·308 lines (261 loc) · 11 KB
/
kid_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
#!/usr/bin/env python3
"""Calculates the Kernel Inception Distance (KID) to evalulate GANs
"""
import os
import pathlib
import sys
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
import numpy as np
import torch
from sklearn.metrics.pairwise import polynomial_kernel
from scipy import linalg
from PIL import Image
from torch.nn.functional import adaptive_avg_pool2d
try:
from tqdm import tqdm
except ImportError:
# If not tqdm is not available, provide a mock version of it
def tqdm(x): return x
from models.inception import InceptionV3
from models.lenet import LeNet5
def get_activations(files, model, batch_size=50, dims=2048,
cuda=False, verbose=False):
"""Calculates the activations of the pool_3 layer for all images.
Params:
-- files : List of image files paths
-- model : Instance of inception model
-- batch_size : Batch size of images for the model to process at once.
Make sure that the number of samples is a multiple of
the batch size, otherwise some samples are ignored. This
behavior is retained to match the original FID score
implementation.
-- dims : Dimensionality of features returned by Inception
-- cuda : If set to True, use GPU
-- verbose : If set to True and parameter out_step is given, the number
of calculated batches is reported.
Returns:
-- A numpy array of dimension (num images, dims) that contains the
activations of the given tensor when feeding inception with the
query tensor.
"""
model.eval()
is_numpy = True if type(files[0]) == np.ndarray else False
if len(files) % batch_size != 0:
print(('Warning: number of images is not a multiple of the '
'batch size. Some samples are going to be ignored.'))
if batch_size > len(files):
print(('Warning: batch size is bigger than the data size. '
'Setting batch size to data size'))
batch_size = len(files)
n_batches = len(files) // batch_size
n_used_imgs = n_batches * batch_size
pred_arr = np.empty((n_used_imgs, dims))
for i in tqdm(range(n_batches)):
if verbose:
print('\rPropagating batch %d/%d' % (i + 1, n_batches), end='', flush=True)
start = i * batch_size
end = start + batch_size
if is_numpy:
images = np.copy(files[start:end]) + 1
images /= 2.
else:
images = [np.array(Image.open(str(f))) for f in files[start:end]]
images = np.stack(images).astype(np.float32) / 255.
# Reshape to (n_images, 3, height, width)
images = images.transpose((0, 3, 1, 2))
batch = torch.from_numpy(images).type(torch.FloatTensor)
if cuda:
batch = batch.cuda()
pred = model(batch)[0]
# If model output is not scalar, apply global spatial average pooling.
# This happens if you choose a dimensionality not equal 2048.
if pred.shape[2] != 1 or pred.shape[3] != 1:
pred = adaptive_avg_pool2d(pred, output_size=(1, 1))
pred_arr[start:end] = pred.cpu().data.numpy().reshape(batch_size, -1)
if verbose:
print('done', np.min(images))
return pred_arr
def extract_lenet_features(imgs, net):
net.eval()
feats = []
imgs = imgs.reshape([-1, 100] + list(imgs.shape[1:]))
if imgs[0].min() < -0.001:
imgs = (imgs + 1)/2.0
print(imgs.shape, imgs.min(), imgs.max())
imgs = torch.from_numpy(imgs)
for i, images in enumerate(imgs):
feats.append(net.extract_features(images).detach().cpu().numpy())
feats = np.vstack(feats)
return feats
def _compute_activations(path, model, batch_size, dims, cuda, model_type):
if not type(path) == np.ndarray:
import glob
jpg = os.path.join(path, '*.jpg')
png = os.path.join(path, '*.png')
path = glob.glob(jpg) + glob.glob(png)
if len(path) > 50000:
import random
random.shuffle(path)
path = path[:50000]
if model_type == 'inception':
act = get_activations(path, model, batch_size, dims, cuda)
elif model_type == 'lenet':
act = extract_lenet_features(path, model)
return act
def calculate_kid_given_paths(paths, batch_size, cuda, dims, model_type='inception'):
"""Calculates the KID of two paths"""
pths = []
for p in paths:
if not os.path.exists(p):
raise RuntimeError('Invalid path: %s' % p)
if os.path.isdir(p):
pths.append(p)
elif p.endswith('.npy'):
np_imgs = np.load(p)
if np_imgs.shape[0] > 50000: np_imgs = np_imgs[np.random.permutation(np.arange(np_imgs.shape[0]))][:50000]
pths.append(np_imgs)
if model_type == 'inception':
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
model = InceptionV3([block_idx])
elif model_type == 'lenet':
model = LeNet5()
model.load_state_dict(torch.load('./models/lenet.pth'))
if cuda:
model.cuda()
act_true = _compute_activations(pths[0], model, batch_size, dims, cuda, model_type)
pths = pths[1:]
results = []
for j, pth in enumerate(pths):
print(paths[j+1])
actj = _compute_activations(pth, model, batch_size, dims, cuda, model_type)
kid_values = polynomial_mmd_averages(act_true, actj, n_subsets=100)
results.append((paths[j+1], kid_values[0].mean(), kid_values[0].std()))
return results
def _sqn(arr):
flat = np.ravel(arr)
return flat.dot(flat)
def polynomial_mmd_averages(codes_g, codes_r, n_subsets=50, subset_size=1000,
ret_var=True, output=sys.stdout, **kernel_args):
m = min(codes_g.shape[0], codes_r.shape[0])
mmds = np.zeros(n_subsets)
if ret_var:
vars = np.zeros(n_subsets)
choice = np.random.choice
with tqdm(range(n_subsets), desc='MMD', file=output) as bar:
for i in bar:
g = codes_g[choice(len(codes_g), subset_size, replace=False)]
r = codes_r[choice(len(codes_r), subset_size, replace=False)]
o = polynomial_mmd(g, r, **kernel_args, var_at_m=m, ret_var=ret_var)
if ret_var:
mmds[i], vars[i] = o
else:
mmds[i] = o
bar.set_postfix({'mean': mmds[:i+1].mean()})
return (mmds, vars) if ret_var else mmds
def polynomial_mmd(codes_g, codes_r, degree=3, gamma=None, coef0=1,
var_at_m=None, ret_var=True):
# use k(x, y) = (gamma <x, y> + coef0)^degree
# default gamma is 1 / dim
X = codes_g
Y = codes_r
K_XX = polynomial_kernel(X, degree=degree, gamma=gamma, coef0=coef0)
K_YY = polynomial_kernel(Y, degree=degree, gamma=gamma, coef0=coef0)
K_XY = polynomial_kernel(X, Y, degree=degree, gamma=gamma, coef0=coef0)
return _mmd2_and_variance(K_XX, K_XY, K_YY,
var_at_m=var_at_m, ret_var=ret_var)
def _mmd2_and_variance(K_XX, K_XY, K_YY, unit_diagonal=False,
mmd_est='unbiased', block_size=1024,
var_at_m=None, ret_var=True):
# based on
# https://github.com/dougalsutherland/opt-mmd/blob/master/two_sample/mmd.py
# but changed to not compute the full kernel matrix at once
m = K_XX.shape[0]
assert K_XX.shape == (m, m)
assert K_XY.shape == (m, m)
assert K_YY.shape == (m, m)
if var_at_m is None:
var_at_m = m
# Get the various sums of kernels that we'll use
# Kts drop the diagonal, but we don't need to compute them explicitly
if unit_diagonal:
diag_X = diag_Y = 1
sum_diag_X = sum_diag_Y = m
sum_diag2_X = sum_diag2_Y = m
else:
diag_X = np.diagonal(K_XX)
diag_Y = np.diagonal(K_YY)
sum_diag_X = diag_X.sum()
sum_diag_Y = diag_Y.sum()
sum_diag2_X = _sqn(diag_X)
sum_diag2_Y = _sqn(diag_Y)
Kt_XX_sums = K_XX.sum(axis=1) - diag_X
Kt_YY_sums = K_YY.sum(axis=1) - diag_Y
K_XY_sums_0 = K_XY.sum(axis=0)
K_XY_sums_1 = K_XY.sum(axis=1)
Kt_XX_sum = Kt_XX_sums.sum()
Kt_YY_sum = Kt_YY_sums.sum()
K_XY_sum = K_XY_sums_0.sum()
if mmd_est == 'biased':
mmd2 = ((Kt_XX_sum + sum_diag_X) / (m * m)
+ (Kt_YY_sum + sum_diag_Y) / (m * m)
- 2 * K_XY_sum / (m * m))
else:
assert mmd_est in {'unbiased', 'u-statistic'}
mmd2 = (Kt_XX_sum + Kt_YY_sum) / (m * (m-1))
if mmd_est == 'unbiased':
mmd2 -= 2 * K_XY_sum / (m * m)
else:
mmd2 -= 2 * (K_XY_sum - np.trace(K_XY)) / (m * (m-1))
if not ret_var:
return mmd2
Kt_XX_2_sum = _sqn(K_XX) - sum_diag2_X
Kt_YY_2_sum = _sqn(K_YY) - sum_diag2_Y
K_XY_2_sum = _sqn(K_XY)
dot_XX_XY = Kt_XX_sums.dot(K_XY_sums_1)
dot_YY_YX = Kt_YY_sums.dot(K_XY_sums_0)
m1 = m - 1
m2 = m - 2
zeta1_est = (
1 / (m * m1 * m2) * (
_sqn(Kt_XX_sums) - Kt_XX_2_sum + _sqn(Kt_YY_sums) - Kt_YY_2_sum)
- 1 / (m * m1)**2 * (Kt_XX_sum**2 + Kt_YY_sum**2)
+ 1 / (m * m * m1) * (
_sqn(K_XY_sums_1) + _sqn(K_XY_sums_0) - 2 * K_XY_2_sum)
- 2 / m**4 * K_XY_sum**2
- 2 / (m * m * m1) * (dot_XX_XY + dot_YY_YX)
+ 2 / (m**3 * m1) * (Kt_XX_sum + Kt_YY_sum) * K_XY_sum
)
zeta2_est = (
1 / (m * m1) * (Kt_XX_2_sum + Kt_YY_2_sum)
- 1 / (m * m1)**2 * (Kt_XX_sum**2 + Kt_YY_sum**2)
+ 2 / (m * m) * K_XY_2_sum
- 2 / m**4 * K_XY_sum**2
- 4 / (m * m * m1) * (dot_XX_XY + dot_YY_YX)
+ 4 / (m**3 * m1) * (Kt_XX_sum + Kt_YY_sum) * K_XY_sum
)
var_est = (4 * (var_at_m - 2) / (var_at_m * (var_at_m - 1)) * zeta1_est
+ 2 / (var_at_m * (var_at_m - 1)) * zeta2_est)
return mmd2, var_est
if __name__ == '__main__':
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument('--true', type=str, required=True,
help=('Path to the true images'))
parser.add_argument('--fake', type=str, nargs='+', required=True,
help=('Path to the generated images'))
parser.add_argument('--batch-size', type=int, default=50,
help='Batch size to use')
parser.add_argument('--dims', type=int, default=2048,
choices=list(InceptionV3.BLOCK_INDEX_BY_DIM),
help=('Dimensionality of Inception features to use. '
'By default, uses pool3 features'))
parser.add_argument('-c', '--gpu', default='', type=str,
help='GPU to use (leave blank for CPU only)')
parser.add_argument('--model', default='inception', type=str,
help='inception or lenet')
args = parser.parse_args()
print(args)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
paths = [args.true] + args.fake
results = calculate_kid_given_paths(paths, args.batch_size, args.gpu != '', args.dims, model_type=args.model)
for p, m, s in results:
print('KID (%s): %.3f (%.3f)' % (p, m, s))