-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathintraproc_tabular.py
236 lines (188 loc) · 10.3 KB
/
intraproc_tabular.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
"""
Main file to run for each experiment with the correct config.yml file as the argument.
"""
import argparse
import copy
import json
import logging
from pathlib import Path
import numpy as np
import torch
import yaml
from aif360.algorithms.postprocessing import (CalibratedEqOddsPostprocessing,
EqOddsPostprocessing,
RejectOptionClassification)
from sklearn.metrics import balanced_accuracy_score
from sklearn.preprocessing import StandardScaler
from utils import get_data, get_valid_objective, get_test_objective
from tabular_models import load_model, train_model
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print(f'device: {device}')
logger = logging.getLogger("Debiasing")
log_handler = logging.StreamHandler()
logger.addHandler(log_handler)
logger.setLevel(logging.INFO)
log_handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
logger.propagate = False
class Data(object):
def __init__(self, config, seed):
self.train, self.valid, self.test, self.priv, self.unpriv = get_data(config['dataset'], config['protected'], seed=seed)
# priv_index is the index of the priviledged column.
priv_index = self.train.protected_attribute_names.index(list(self.priv[0].keys())[0])
scale_orig = StandardScaler()
self.X_train = torch.tensor(scale_orig.fit_transform(self.train.features), dtype=torch.float32)
self.y_train = torch.tensor(self.train.labels.ravel(), dtype=torch.float32)
self.p_train = self.train.protected_attributes[:, priv_index]
self.X_valid = torch.tensor(scale_orig.transform(self.valid.features), dtype=torch.float32)
self.X_valid_gpu = self.X_valid.to(device)
self.y_valid = torch.tensor(self.valid.labels.ravel(), dtype=torch.float32)
self.y_valid_gpu = self.y_valid.to(device)
self.p_valid = self.valid.protected_attributes[:, priv_index]
self.p_valid_gpu = torch.tensor(self.p_valid).to(device)
valid_train_indices, valid_valid_indices = torch.split(torch.randperm(self.X_valid.size(0)), int(0.7*self.X_valid.size(0)))
self.X_valid_train, self.X_valid_valid = self.X_valid[valid_train_indices, :], self.X_valid[valid_valid_indices, :]
self.y_valid_train, self.y_valid_valid = self.y_valid[valid_train_indices], self.y_valid[valid_valid_indices]
self.p_valid_train, self.p_valid_valid = self.p_valid[valid_train_indices], self.p_valid[valid_valid_indices]
self.X_test = torch.tensor(scale_orig.transform(self.test.features), dtype=torch.float32)
self.X_test_gpu = self.X_test.to(device)
self.y_test = torch.tensor(self.test.labels.ravel(), dtype=torch.float32)
self.y_test_gpu = self.y_test.to(device)
self.p_test = self.test.protected_attributes[:, priv_index]
self.p_test_gpu = torch.tensor(self.p_test).to(device)
self.num_features = self.X_train.size(1)
def main(config):
seed = np.random.randint(0, high=10000)
if 'seed' in config:
seed = config['seed']
torch.manual_seed(seed)
np.random.seed(seed)
# Setup directories to save models and results
Path('models').mkdir(exist_ok=True)
Path('results').mkdir(exist_ok=True)
# Get Data
logger.info(f'Loading Data from dataset: {config["dataset"]}.')
data = Data(config, seed)
# Get trained model
model = load_model(data.num_features, config.get('hyperparameters', {}))
model_path = (Path('models') / Path(config['modelpath']))
if model_path.is_file():
logger.info(f'Loading Model from {model_path}.')
model.load_state_dict(torch.load(model_path))
else:
logger.info(f'{model_path} does not exist. Retraining model from scratch.')
train_model(model, data, epochs=config.get('epochs', 1001))
torch.save(model.state_dict(), model_path)
model_state_dict = copy.deepcopy(model.state_dict())
# Preliminaries
logger.info('Setting up preliminaries.')
model.eval()
with torch.no_grad():
valid_pred = data.valid.copy(deepcopy=True)
valid_pred.scores = model(data.X_valid)[:, 0].reshape(-1, 1).numpy()
valid_pred.labels = np.array(valid_pred.scores > 0.5)
test_pred = data.test.copy(deepcopy=True)
test_pred.scores = model(data.X_test)[:, 0].reshape(-1, 1).numpy()
test_pred.labels = np.array(test_pred.scores > 0.5)
results_valid = {}
results_test = {}
# Evaluate default model
if 'default' in config['models']:
logger.info('Finding best threshold for default model to minimize objective function')
threshs = np.linspace(0, 1, 1001)
performances = []
for thresh in threshs:
perf = balanced_accuracy_score(data.y_valid, valid_pred.scores > thresh)
performances.append(perf)
best_thresh = threshs[np.argmax(performances)]
logger.info('Evaluating default model with best threshold.')
results_valid['default'] = get_valid_objective(valid_pred.scores > best_thresh, data, config)
logger.info(f'Results: {results_valid["default"]}')
results_test['default'] = get_test_objective(test_pred.scores > best_thresh, data, config)
# Evaluate ROC
if 'ROC' in config['models']:
metric_map = {
'spd': 'Statistical parity difference',
'aod': 'Average odds difference',
'eod': 'Equal opportunity difference'
}
ROC = RejectOptionClassification(unprivileged_groups=data.unpriv,
privileged_groups=data.priv,
low_class_thresh=0.01, high_class_thresh=0.99,
num_class_thresh=100, num_ROC_margin=50,
metric_name=metric_map[config['metric']],
metric_ub=0.05, metric_lb=-0.05)
logger.info('Training ROC model with validation dataset.')
ROC = ROC.fit(data.valid, valid_pred)
logger.info('Evaluating ROC model.')
y_pred = ROC.predict(valid_pred).labels.reshape(-1)
results_valid['ROC'] = get_valid_objective(y_pred, data, config)
logger.info(f'Results: {results_valid["ROC"]}')
y_pred = ROC.predict(test_pred).labels.reshape(-1)
results_test['ROC'] = get_test_objective(y_pred, data, config)
ROC = None
# Evaluate Equality of Odds
if 'EqOdds' in config['models']:
eqodds = EqOddsPostprocessing(privileged_groups=data.priv,
unprivileged_groups=data.unpriv)
logger.info('Training Equality of Odds model with validation dataset.')
eqodds = eqodds.fit(data.valid, valid_pred)
logger.info('Evaluating Equality of Odds model.')
y_pred = eqodds.predict(valid_pred).labels.reshape(-1)
results_valid['EqOdds'] = get_valid_objective(y_pred, data, config)
logger.info(f'Results: {results_valid["EqOdds"]}')
y_pred = eqodds.predict(test_pred).labels.reshape(-1)
results_test['EqOdds'] = get_test_objective(y_pred, data, config)
eqodds = None
# Evaluate Calibrated Equality of Odds
if 'CalibEqOdds' in config['models']:
cost_constraint = config['CalibEqOdds']['cost_constraint']
cpp = CalibratedEqOddsPostprocessing(privileged_groups=data.priv,
unprivileged_groups=data.unpriv,
cost_constraint=cost_constraint)
logger.info('Training Calibrated Equality of Odds model with validation dataset.')
cpp = cpp.fit(data.valid, valid_pred)
logger.info('Evaluating Calibrated Equality of Odds model.')
y_pred = cpp.predict(valid_pred).labels.reshape(-1)
results_valid['CalibEqOdds'] = get_valid_objective(y_pred, data, config)
logger.info(f'Results: {results_valid["CalibEqOdds"]}')
y_pred = cpp.predict(test_pred).labels.reshape(-1)
results_test['CalibEqOdds'] = get_test_objective(y_pred, data, config)
cpp = None
# Evaluate Random Debiasing
if 'random' in config['models']:
from algorithms.random import random_debiasing
results_valid['random'], results_test['random'] = random_debiasing(model_state_dict, data, config, device)
# Evaluate fairBO
if 'fairBO' in config['models']:
from algorithms.fairBO import fairBO_debiasing
results_valid['fairBO'], results_test['fairBO'] = fairBO_debiasing(model_state_dict, data, config, device)
# Evaluate Layerwise Optimizer
if 'layerwiseOpt' in config['models']:
from algorithms.layerwiseOpt import layerwiseOpt_debiasing
results_valid['layerwiseOpt'], results_test['layerwiseOpt'] = layerwiseOpt_debiasing(model_state_dict, data, config, device)
# Evaluate Adversarial
if 'adversarial' in config['models']:
from algorithms.adversarial import adversarial_debiasing
results_valid['adversarial'], results_test['adversarial'] = adversarial_debiasing(model_state_dict, data, config, device)
# Mitigating Unwanted Biases with Adversarial Learning
if 'mitigating' in config['models']:
from algorithms.mitigating import mitigating_debiasing
results_valid['mitigating'], results_test['mitigating'] = mitigating_debiasing(model_state_dict, data, config, device)
# Save Results
results_valid['config'] = config
logger.info(f'Validation Results: {results_valid}')
logger.info(f'Saving validation results to {config["experiment_name"]}_valid_output.json')
with open(Path('results') / f'{config["experiment_name"]}_valid_output.json', 'w') as fh:
json.dump(results_valid, fh)
results_test['config'] = config
logger.info(f'Test Results: {results_test}')
logger.info(f'Saving validation results to {config["experiment_name"]}_test_output.json')
with open(Path('results') / f'{config["experiment_name"]}_test_output.json', 'w') as fh:
json.dump(results_test, fh)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('config', help='Path to configuration yaml file.')
args = parser.parse_args()
with open(args.config, 'r') as fh:
config = yaml.load(fh, Loader=yaml.FullLoader)
main(config)