-
Notifications
You must be signed in to change notification settings - Fork 1
/
final_report.tex
641 lines (536 loc) · 21.5 KB
/
final_report.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
% Options for packages loaded elsewhere
\PassOptionsToPackage{unicode}{hyperref}
\PassOptionsToPackage{hyphens}{url}
%
\documentclass[
]{article}
\usepackage{amsmath,amssymb}
\usepackage{lmodern}
\usepackage{iftex}
\ifPDFTeX
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage{textcomp} % provide euro and other symbols
\else % if luatex or xetex
\usepackage{unicode-math}
\defaultfontfeatures{Scale=MatchLowercase}
\defaultfontfeatures[\rmfamily]{Ligatures=TeX,Scale=1}
\fi
% Use upquote if available, for straight quotes in verbatim environments
\IfFileExists{upquote.sty}{\usepackage{upquote}}{}
\IfFileExists{microtype.sty}{% use microtype if available
\usepackage[]{microtype}
\UseMicrotypeSet[protrusion]{basicmath} % disable protrusion for tt fonts
}{}
\makeatletter
\@ifundefined{KOMAClassName}{% if non-KOMA class
\IfFileExists{parskip.sty}{%
\usepackage{parskip}
}{% else
\setlength{\parindent}{0pt}
\setlength{\parskip}{6pt plus 2pt minus 1pt}}
}{% if KOMA class
\KOMAoptions{parskip=half}}
\makeatother
\usepackage{xcolor}
\usepackage[margin=1in]{geometry}
\usepackage{graphicx}
\makeatletter
\def\maxwidth{\ifdim\Gin@nat@width>\linewidth\linewidth\else\Gin@nat@width\fi}
\def\maxheight{\ifdim\Gin@nat@height>\textheight\textheight\else\Gin@nat@height\fi}
\makeatother
% Scale images if necessary, so that they will not overflow the page
% margins by default, and it is still possible to overwrite the defaults
% using explicit options in \includegraphics[width, height, ...]{}
\setkeys{Gin}{width=\maxwidth,height=\maxheight,keepaspectratio}
% Set default figure placement to htbp
\makeatletter
\def\fps@figure{htbp}
\makeatother
\setlength{\emergencystretch}{3em} % prevent overfull lines
\providecommand{\tightlist}{%
\setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}
\setcounter{secnumdepth}{-\maxdimen} % remove section numbering
\usepackage{booktabs}
\usepackage{longtable}
\usepackage{array}
\usepackage{multirow}
\usepackage{wrapfig}
\usepackage{float}
\usepackage{colortbl}
\usepackage{pdflscape}
\usepackage{tabu}
\usepackage{threeparttable}
\usepackage{threeparttablex}
\usepackage[normalem]{ulem}
\usepackage{makecell}
\usepackage{xcolor}
\ifLuaTeX
\usepackage{selnolig} % disable illegal ligatures
\fi
\IfFileExists{bookmark.sty}{\usepackage{bookmark}}{\usepackage{hyperref}}
\IfFileExists{xurl.sty}{\usepackage{xurl}}{} % add URL line breaks if available
\urlstyle{same} % disable monospaced font for URLs
\hypersetup{
pdftitle={Three (Groups of) Blind Mice},
pdfauthor={Alyssa Allsop and Amira Burns},
hidelinks,
pdfcreator={LaTeX via pandoc}}
\title{Three (Groups of) Blind Mice}
\usepackage{etoolbox}
\makeatletter
\providecommand{\subtitle}[1]{% add subtitle to \maketitle
\apptocmd{\@title}{\par {\large #1 \par}}{}{}
}
\makeatother
\subtitle{Familial Clusters of Cataract Development in Irradiated Mice}
\author{Alyssa Allsop and Amira Burns}
\date{2022-06-21}
\begin{document}
\maketitle
\hypertarget{abstract}{%
\subsection{Abstract}\label{abstract}}
\hypertarget{introduction}{%
\subsection{Introduction}\label{introduction}}
Little is known about the effects of high atomic number and energy (HZE)
radiation, a main component of space radiation to which exposure is
unavoidable beyond Earth's magnetic field. In contrast, extensive
research shows exposure to high doses of gamma radiation leads to acute
radiation sickness. Effects include damage to the blood forming system,
GI system, immune system, increased risk for cancer, cardiovascular
disease, neurodegenerative disease, death, and cataracts.. The serious
health implications from HZE radiation for astronauts who leave Earth's
magnetic field warrant further study. Adverse effects from radiation may
also be attributable to other factors, including genetics; several
different cancers have been observed to cluster in mice families
(Chernyavskiy, et. al., 2017). Accounting for potential family
clustering allows for thorough examination of the primary research
questions. Is there a genetic susceptibility to cataracts caused by
radiation? Accounting for potential genetic susceptibility, is there a
difference in cataract presentation between HZE radiation and gamma
radiation? The full dataset includes 1820 unique mice from 48 unique
families, with equal random assignments by family to each of three
treatment groups. Mice are bred over several generations to create a
genetically heterogeneous sample, the better to represent the diverse
biology of the human population. The treatments are HZE irradiation,
gamma irradiation, and non-irradiated control. The HZE group is
irradiated with either silicon or iron nuclei HZE ions, which are
considered as a single treatment group. The second group is subjected to
137 Cs gamma irradiation. Mice in both irradiated groups are exposed to
radiation at 7-12 weeks of age. The third group is unirradiated control.
All mice are monitored until 800 days of age --effectively a survival
study. Mice are checked weekly for symptoms of cataracts, cataract risk
factors, and other symptoms of radiation exposure such as tumors and
carcinomas. Resources do not allow for weekly measurement of every
mouse; previous measurements are carried forward if a mouse is not
assessed on a particular week. This analysis uses a simplified version
of the data set - a snapshot of the 1169 mice that are alive at 552
days. This cutoff is chosen because it is the median survival time for
the group with the shortest median survival. There are 47 unique
families with n = 396 in the HZE group, n = 277 in the gamma radiation
group, and n = 496 in the unirradiated control group. There are up to
two generations of mice pups from each family in the dataset, but
generation is not distinguished in the simplified data. Family size
ranges from n = 11 to n = 48, with median family size of 24.
\begin{wraptable}{r}{0pt}
\caption{\label{tab:scoregrps}Counts of Score by Treatment}
\centering
\fontsize{12}{14}\selectfont
\begin{tabular}[t]{l|r|r|r|r|r}
\hline
\multicolumn{1}{c|}{ } & \multicolumn{4}{c|}{Cataract Score} & \multicolumn{1}{c}{ } \\
\cline{2-5}
Treatment & 1 & 2 & 3 & 4 & Total\\
\hline
Unirradiated & 438 & 45 & 11 & 2 & 496\\
\hline
Gamma & 214 & 53 & 6 & 4 & 277\\
\hline
HZE & 281 & 107 & 6 & 2 & 396\\
\hline
\end{tabular}
\end{wraptable}
The response is Merriam-Focht cataract score (Merriam \& Focht, 1957),
an ordinal categorical variable corresponding to radiation-associated
ocular changes in the eye. A score of 0 is associated with a completely
clear lens, while a score of 5 is associated with a completely occluded
lens. This dataset contains cataract score levels = {[}1, 2, 3, 4{]}. A
score \(\ge\) 2 indicates presence of cataracts, and the small sample
sizes for score \(>\) 2 across all treatment groups raise concerns about
making inference on an ordinal analysis; consequently, the response is
converted to binary \emph{Cataracts} with score = 1 converted to 0, and
score \(\ge\) 2 converted to 1. The main experimental factor is
\emph{Treatment}, a categorical variable with three levels = {[}HZE
radiation, gamma radiation, non-irradiated control{]}. A single random
effect, genetic \emph{Family}, is a categorical factor with 47 levels.
Both Treatment and Family are central to the experimental design and
will serve as the basis for all models considered. Additional covariates
under consideration are:\\
+ Sex: categorical with two levels = {[}Male, Female{]}.\\
+ Weight: numeric, in grams; range = {[}16.11, 59.85{]}.\\
+ Coat color: categorical with six levels = {[}albino, black, creme
brown, grey, light brown, light grey{]}.\\
+ Body condition score (BCS): ordered categorical with 5 levels,
representing a range from emaciated to obese. Levels = {[}BC1, BC2, BC3,
BC4, BC5{]}.\\
+ Age: numeric, in days; range = {[}552, 816{]}.\\
+ Three categorical variables indicating presence of other cancers:
Harderian Tumor: categorical with three levels = {[}bilateral,
unilateral, none{]}. Myeloid Leukemia: binary categorical with two
levels = {[}0, 1{]}. PreT Lymphoma: binary categorical with two levels =
{[}0, 1{]}.
The experimental design prescribed the inclusion of Treatment and Family
in a final model.
\hypertarget{summary-statistics}{%
\subsection{Summary Statistics}\label{summary-statistics}}
Exploratory data analysis consisted of investigating the response in
terms of Treatment and Family and any potential associations between the
response and covariates. In addition, possible interactions and
correlations between covariates and the primary predictors in terms of
the response were of interest.
\begin{table}[!h]
\caption{\label{tab:table}Mice Counts and Percentages by Sex, Treatment Group, Cataracts}
\centering
\begin{tabular}[t]{l|l|r|r|r|r|r|r}
\hline
\multicolumn{2}{c|}{ } & \multicolumn{2}{c|}{Female} & \multicolumn{2}{c|}{Male} & \multicolumn{2}{c}{\$\textbackslash{}sum\$} \\
\cline{3-4} \cline{5-6} \cline{7-8}
Treatment & Cataracts & n & prop & n & prop & n & prop\\
\hline
\multicolumn{8}{l}{\textbf{Control}}\\
\hline
\hspace{1em} & No & 238 & 0.92 & 200 & 0.84 & 438 & 0.88\\
\hline
\hspace{1em} & Yes & 20 & 0.08 & 38 & 0.16 & 58 & 0.12\\
\hline
\hspace{1em} & \$\textbackslash{}sum\$ & 258 & & 238 & & 496 & \\
\hline
\multicolumn{8}{l}{\textbf{Gamma}}\\
\hline
\hspace{1em} & No & 131 & 0.90 & 83 & 0.63 & 214 & 0.77\\
\hline
\hspace{1em} & Yes & 14 & 0.10 & 49 & 0.37 & 63 & 0.23\\
\hline
\hspace{1em} & \$\textbackslash{}sum\$ & 145 & & 132 & & 277 & \\
\hline
\multicolumn{8}{l}{\textbf{HZE}}\\
\hline
\hspace{1em} & No & 181 & 0.88 & 100 & 0.52 & 281 & 0.71\\
\hline
\hspace{1em} & Yes & 24 & 0.12 & 91 & 0.48 & 115 & 0.29\\
\hline
\hspace{1em} & \$\textbackslash{}sum\$ & 205 & & 191 & & 396 & \\
\hline
\multicolumn{8}{l}{\textbf{\$\textbackslash{}sum\$}}\\
\hline
\hspace{1em} & \$\textbackslash{}sum\$ & 608 & & 561 & & 1169 & \\
\hline
\end{tabular}
\end{table}
\includegraphics{final_report_files/figure-latex/barplot-1.pdf}
\hypertarget{statistical-methods}{%
\subsection{Statistical Methods}\label{statistical-methods}}
\hypertarget{frequentist-approach}{%
\subsubsection{Frequentist Approach}\label{frequentist-approach}}
\begin{verbatim}
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: Cataracts ~ Treatment * Sex + (1 | Family)
## Data: cats
##
## AIC BIC logLik deviance df.resid
## 1018.0 1053.4 -502.0 1004.0 1162
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.9388 -0.4201 -0.3050 -0.2193 4.7063
##
## Random effects:
## Groups Name Variance Std.Dev.
## Family (Intercept) 0.3949 0.6284
## Number of obs: 1169, groups: Family, 47
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.6973 0.2608 -10.343 < 2e-16 ***
## TreatmentGamma 0.2137 0.3705 0.577 0.56409
## TreatmentHZE 0.5007 0.3239 1.546 0.12214
## SexM 0.8875 0.2981 2.977 0.00291 **
## TreatmentGamma:SexM 0.9748 0.4548 2.144 0.03207 *
## TreatmentHZE:SexM 1.2068 0.4020 3.002 0.00269 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) TrtmnG TrtHZE SexM TrG:SM
## TreatmntGmm -0.571
## TreatmntHZE -0.666 0.464
## SexM -0.730 0.501 0.578
## TrtmntGm:SM 0.455 -0.815 -0.375 -0.648
## TrtmnHZE:SM 0.513 -0.373 -0.800 -0.733 0.487
\end{verbatim}
\hypertarget{bayesian-approach}{%
\subsubsection{Bayesian Approach}\label{bayesian-approach}}
We fit a complementary Bayesian model to examine the distribution of the
estimates from our final model, as well as test its robustness to
alternative approaches. The Bayes model is parameterized as:
\[
\begin{aligned}
Y_{ij} \sim &Bernoulli(p)\\
log(\frac{p}{1-p}) = &\ \beta_0*Control_i*F_i\ +\beta_1*Gamma_i*F_i\ + \beta_2*HZE_i*F_i\ + \\ &\beta_3*Control_i*M_i\ +\beta_4*Gamma*M\ + \beta_5*HZE*M\ + \\
&v_{j} + \epsilon_{ij}\\
&i = 1, ..., 1169\ \mbox{ mice} \\
&j = 1,...,47\ \ \mbox{ families, and} \\
v_j \sim\ &N(0, \tau)
\end{aligned}
\]
With non-informative parameters:\\
\[
\begin{aligned}
\beta_0 &\sim N(0, 0.001)\\
\beta_1 &\sim N(0, 0.001)\\
\beta_2 &\sim N(0, 0.001)\\
\beta_3 &\sim N(0, 0.001)\\
\beta_4 &\sim N(0, 0.001)\\
\beta_5 &\sim N(0, 0.001)\\
v_i &\sim N(0, \sigma^2)\\
\tau &\sim Gamma(0.001, 0.001) \mbox{ where}\ \sigma^2 = 1/\tau\\
\end{aligned}
\]
The model was run through a Gibbs sampler Markov Chain Monte Carlo
(MCMC) algorithm to approximate the posterior distribution of all fixed
effects estimates and the variance of the random effect. 3 chains of
60000 total iterations with a 10000-iteration burn-in period; starting
values were obtained from the estimates generated by the Frequentist
model, with noise added to avoid false convergence.
\begin{verbatim}
## Compiling model graph
## Resolving undeclared variables
## Allocating nodes
## Graph information:
## Observed stochastic nodes: 1169
## Unobserved stochastic nodes: 54
## Total graph size: 6473
##
## Initializing model
\end{verbatim}
\begin{wraptable}{l}{0pt}
\caption{\label{tab:bayes_tab}Final Model Parameter Estimates (probabilities)}
\centering
\begin{tabular}[t]{l|r|r|r|r|r|r|r}
\hline
& GLMM Est & MCMC Mean & MCMC Median & MCMC Mode & MCMC SD & HPD Lower & HPD Upper\\
\hline
\$\textbackslash{}beta\_0\$ & 0.063 & 0.063 & 0.062 & 0.057 & 0.016 & 0.034 & 0.094\\
\hline
\$\textbackslash{}beta\_1\$ & 0.553 & 0.549 & 0.551 & 0.550 & 0.090 & 0.371 & 0.720\\
\hline
\$\textbackslash{}beta\_2\$ & 0.623 & 0.621 & 0.624 & 0.634 & 0.076 & 0.469 & 0.764\\
\hline
\$\textbackslash{}beta\_3\$ & 0.708 & 0.708 & 0.710 & 0.714 & 0.062 & 0.589 & 0.828\\
\hline
\$\textbackslash{}beta\_4\$ & 0.726 & 0.721 & 0.729 & 0.723 & 0.090 & 0.544 & 0.883\\
\hline
\$\textbackslash{}beta\_5\$ & 0.770 & 0.763 & 0.771 & 0.776 & 0.072 & 0.618 & 0.892\\
\hline
\$\textbackslash{}sigma\textasciicircum{}2\$ & 0.597 & 0.609 & 0.604 & 0.585 & 0.041 & 0.539 & 0.694\\
\hline
\end{tabular}
\end{wraptable}
\includegraphics{final_report_files/figure-latex/postdens-1.pdf}
\hypertarget{limitations-and-alternatives}{%
\subsection{Limitations and
Alternatives}\label{limitations-and-alternatives}}
Presence of competing risks in the experimental design obscure the
presence of family clusters of cataracts. It is reasonable to assume
that individuals in the irradiated Treatment groups were more likely to
die due to more acute effects of irradiation before developing
cataracts, compared to individuals in the control group. Simplifying the
dataset by instituting a cutoff age attempts to address this limitation,
but the issue persists even after excluding individuals deceased before
Age = 552.
\hypertarget{results-and-conclusions}{%
\subsection{Results and Conclusions}\label{results-and-conclusions}}
The final probability for developing cataracts can be written as:\\
\[
p_i = 0.063 + 0.55*Gamma_i + 0.623*HZE_i + 0.708*Male_i + 0.726*Gamma_i*Male_i + 0.770*HZE_i*Male_i
\]
\begin{verbatim}
## Sex = F:
## Treatment prob SE df asymp.LCL asymp.UCL null z.ratio p.value
## Unirradiated 0.0631 0.0154 Inf 0.0389 0.101 0.5 -10.343 <.0001
## Gamma 0.0770 0.0219 Inf 0.0436 0.132 0.5 -8.062 <.0001
## HZE 0.1001 0.0221 Inf 0.0643 0.153 0.5 -8.942 <.0001
##
## Sex = M:
## Treatment prob SE df asymp.LCL asymp.UCL null z.ratio p.value
## Unirradiated 0.1407 0.0252 Inf 0.0982 0.198 0.5 -8.697 <.0001
## Gamma 0.3495 0.0485 Inf 0.2613 0.449 0.5 -2.913 0.0036
## HZE 0.4744 0.0448 Inf 0.3882 0.562 0.5 -0.569 0.5693
##
## Confidence level used: 0.95
## Intervals are back-transformed from the logit scale
## Tests are performed on the logit scale
\end{verbatim}
\begin{verbatim}
## Sex = F:
## contrast odds.ratio SE df null z.ratio p.value
## Gamma / Unirradiated 1.24 0.459 Inf 1 0.577 0.8325
## HZE / Unirradiated 1.65 0.534 Inf 1 1.546 0.2695
## HZE / Gamma 1.33 0.482 Inf 1 0.793 0.7071
##
## Sex = M:
## contrast odds.ratio SE df null z.ratio p.value
## Gamma / Unirradiated 3.28 0.865 Inf 1 4.509 <.0001
## HZE / Unirradiated 5.51 1.331 Inf 1 7.076 <.0001
## HZE / Gamma 1.68 0.412 Inf 1 2.115 0.0868
##
## P value adjustment: tukey method for comparing a family of 3 estimates
## Tests are performed on the log odds ratio scale
\end{verbatim}
\includegraphics{final_report_files/figure-latex/contr-1.pdf}
Assessing odds ratios for cataracts between groups:
\includegraphics{final_report_files/figure-latex/oddsr-1.pdf}
\begin{verbatim}
## Treatment = Unirradiated:
## contrast odds.ratio SE df null z.ratio p.value
## M / F 2.43 0.724 Inf 1 2.977 0.0029
##
## Treatment = Gamma:
## contrast odds.ratio SE df null z.ratio p.value
## M / F 6.44 2.231 Inf 1 5.374 <.0001
##
## Treatment = HZE:
## contrast odds.ratio SE df null z.ratio p.value
## M / F 8.12 2.220 Inf 1 7.658 <.0001
##
## Tests are performed on the log odds ratio scale
\end{verbatim}
\includegraphics{final_report_files/figure-latex/oddsr2-1.pdf}
Assessing relative risk for cataracts between groups:\\
\includegraphics{final_report_files/figure-latex/RR-1.pdf}
\includegraphics{final_report_files/figure-latex/RR1-1.pdf}
Visualizing random effect by family:\\
\includegraphics{final_report_files/figure-latex/re_plot-1.pdf}
\hypertarget{authors-statements}{%
\subsection{Authors' Statements}\label{authors-statements}}
Both authors contributed to statistical analysis and writing for this
report. Both authors read and approved the final report. Both authors
contributed equally to introduction, exploratory data analysis, summary
statistics, and results. Alyssa Allsop served as the primary
statistician on fitting Frequentist models; Amira Burns served as the
primary statistician on fitting the Bayesian model.
\hypertarget{references}{%
\subsection{References}\label{references}}
Agresti, A (2013). \emph{Categorical Data Analysis} (Third Edition).
John Wiley \& Sons.
Chernyavskiy, P., Edmondson, E. F., Weil, M. M., \& Little, M. P.
(2017). \emph{High-energy particle beam and gamma radiation exposure,
familial relatedness and cancer in mice.} British journal of cancer,
117(1), 41--50. \url{https://doi.org/10.1038/bjc.2017.141}
Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., Rubin, D.
(2014). \emph{Bayesian Data Analysis} (Third Edition). CRC Press.
Roback, P., Legler, J. (2021). \emph{Beyond Multiple Linear Regression.
Applied Generalized Linear Models and Multilevel Models in R} (Second
Edition). CRC Press. Online version:
\url{https://bookdown.org/roback/bookdown-BeyondMLR/}
DiMaggio, C., Albert, J., Spiegelhalter, D., Best, N., Gelman, A.,
Carstensen, B., Guerrin, L., Jensen, S. (2015) \emph{Bayesian Analysis
for Epidemiologists III: Regression Modeling.} Center for Injury
Epidemiology and Prevention at Columbia University.
\url{http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-11/code-8/\#bayesian-regression-modeling-with-bugs-or-jags}
R Packages:\\
+ Douglas Bates, Martin Maechler, Ben Bolker, Steve Walker (2015).
Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical
Software, 67(1), 1-48. \url{doi:10.18637/jss.v067.i01}.\\
+ Martyn Plummer (2021). rjags: Bayesian Graphical Models using MCMC. R
package version 4-12. \url{https://CRAN.R-project.org/package=rjags}\\
+ Russell V. Lenth (2022). emmeans: Estimated Marginal Means, aka
Least-Squares Means. R package version 1.7.3.
\url{https://CRAN.R-project.org/package=emmeans}
\hypertarget{appendix}{%
\subsection{Appendix}\label{appendix}}
\hypertarget{additional-exploratory-data-analysis}{%
\subsubsection{Additional Exploratory Data
Analysis}\label{additional-exploratory-data-analysis}}
\hypertarget{glmm-model-selection}{%
\subsubsection{GLMM Model Selection}\label{glmm-model-selection}}
\hypertarget{glmm-model-diagnostics-necessary}{%
\subsubsection{GLMM Model Diagnostics
(necessary?)}\label{glmm-model-diagnostics-necessary}}
\hypertarget{bayes-model-diagnostics}{%
\subsubsection{Bayes Model Diagnostics}\label{bayes-model-diagnostics}}
Traceplots:
\includegraphics{final_report_files/figure-latex/trace-1.pdf}
ACF plots:\\
\includegraphics{final_report_files/figure-latex/acf-1.pdf}
\includegraphics{final_report_files/figure-latex/acf-2.pdf} Gelman-Rubin
Diagnostics:
\begin{verbatim}
## Potential scale reduction factors:
##
## Point est. Upper C.I.
## b0 1 1
## b1 1 1
## b2 1 1
## b3 1 1
## b4 1 1
## b5 1 1
## deviance 1 1
## sigma2 1 1
##
## Multivariate psrf
##
## 1
\end{verbatim}
\includegraphics{final_report_files/figure-latex/grd-1.pdf}
\hypertarget{post-hoc-assessments}{%
\subsubsection{Post-Hoc Assessments}\label{post-hoc-assessments}}
\includegraphics{final_report_files/figure-latex/glmm_ors-1.pdf}
~
Final Model: Odds Ratios of Cataracts by Sex, Treatment Group
Predictors
Odds Ratios
CI
p
Control(Female)
0.07
0.04~--~0.11
\textless0.001
Gamma(Female)
1.24
0.60~--~2.56
0.564
HZE(Female)
1.65
0.87~--~3.11
0.122
Control(Male)
2.43
1.35~--~4.36
0.003
Gamma(Male)
2.65
1.09~--~6.46
0.032
HZE(Male)
3.34
1.52~--~7.35
0.003
Random Effects
σ2
3.29
τ00 Family
0.39
ICC
0.11
N Family
47
Observations
1169
Marginal R2 / Conditional R2
0.194 / 0.281
\hypertarget{full-code}{%
\subsubsection{Full Code}\label{full-code}}
\end{document}