diff --git a/.buildinfo b/.buildinfo new file mode 100644 index 0000000..89e3e55 --- /dev/null +++ b/.buildinfo @@ -0,0 +1,4 @@ +# Sphinx build info version 1 +# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. +config: 62af7e129c6c1ecc6228d4db28e9bc0a +tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/.doctrees/Tutorial_advanced.doctree b/.doctrees/Tutorial_advanced.doctree new file mode 100644 index 0000000..e47579c Binary files /dev/null and b/.doctrees/Tutorial_advanced.doctree differ diff --git a/.doctrees/Tutorial_with_GUI.doctree b/.doctrees/Tutorial_with_GUI.doctree new file mode 100644 index 0000000..a352495 Binary files /dev/null and b/.doctrees/Tutorial_with_GUI.doctree differ diff --git a/.doctrees/environment.pickle b/.doctrees/environment.pickle new file mode 100644 index 0000000..8c977ca Binary files /dev/null and b/.doctrees/environment.pickle differ diff --git a/.doctrees/getting_started.doctree b/.doctrees/getting_started.doctree new file mode 100644 index 0000000..f058c1d Binary files /dev/null and b/.doctrees/getting_started.doctree differ diff --git a/.doctrees/index.doctree b/.doctrees/index.doctree new file mode 100644 index 0000000..6e82c57 Binary files /dev/null and b/.doctrees/index.doctree differ diff --git a/.doctrees/modules.doctree b/.doctrees/modules.doctree new file mode 100644 index 0000000..86d58ef Binary files /dev/null and b/.doctrees/modules.doctree differ diff --git a/.doctrees/simca.doctree b/.doctrees/simca.doctree new file mode 100644 index 0000000..f652d1d Binary files /dev/null and b/.doctrees/simca.doctree differ diff --git a/.nojekyll b/.nojekyll new file mode 100644 index 0000000..e69de29 diff --git a/Tutorial_advanced.html b/Tutorial_advanced.html new file mode 100644 index 0000000..be313a4 --- /dev/null +++ b/Tutorial_advanced.html @@ -0,0 +1,300 @@ + + + + + + + Tutorial - Advanced (only script) — simca 1.0 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Tutorial - Advanced (only script)

+
+

Single acquisition

+

This tutorial walks you through the process of running a simple acquisition using the CassiSystem class from the simca package.

+
+

Setup

+

First, make sure to import the necessary modules:

+
from simca import CassiSystem, load_yaml_config
+
+
+

Next, load the configuration files:

+
config_dataset = load_yaml_config("simca/configs/dataset.yml")
+config_system = load_yaml_config("simca/configs/cassi_system.yml")
+config_patterns = load_yaml_config("simca/configs/pattern.yml")
+config_acquisition = load_yaml_config("simca/configs/acquisition.yml")
+
+
+

Then, set the name of the dataset of interest:

+
dataset_name = "indian_pines"
+
+
+
+
+

Initialize the CassiSystem

+

Initialize the CassiSystem:

+
cassi_system = CassiSystem(system_config=config_system)
+
+
+
+
+

Load the Hyperspectral dataset

+

Load the hyperspectral dataset:

+
cassi_system.load_dataset(dataset_name, config_dataset["datasets directory"])
+
+
+
+
+

Generate the Coded Aperture Pattern

+

Generate the coded aperture pattern:

+
cassi_system.generate_2D_pattern(config_patterns)
+
+
+
+
+

Propagate the Coded Aperture Grid

+

Propagate the coded aperture grid to the detector plane:

+
cassi_system.propagate_coded_aperture_grid()
+
+
+
+
+

Generate the Filtering Cube

+

Generate the filtering cube:

+
cassi_system.generate_filtering_cube()
+
+
+
+
+

(Optional) Generate the PSF

+

Generate the PSF of the optical system:

+
cassi_system.optical_model.generate_psf(type="Gaussian",radius=100)
+
+
+
+
+

Simulate the Acquisition

+

Simulate the acquisition (with PSF in this case):

+
cassi_system.image_acquisition(use_psf=True, chunck_size=50)
+
+
+
+
+

Save the Acquisition

+

Finally, save the acquisition:

+
cassi_system.save_acquisition(config_patterns, config_acquisition)
+
+
+

And that’s it! You’ve successfully run an acquisition using the CassiSystem class from the simca package.

+
+
+
+

Multiple acquisitions

+

This tutorial walks you through the process of running multiple acquisitions using the CassiSystem class from the simca package.

+
+

Setup

+

First, make sure to import the necessary modules and configurations:

+
import matplotlib.pyplot as plt
+from simca import CassiSystem
+from simca.functions_general_purpose import *
+import os
+
+config_dataset = load_yaml_config("simca/configs/dataset.yml")
+config_system = load_yaml_config("simca/configs/cassi_system.yml")
+config_patterns = load_yaml_config("simca/configs/pattern.yml")
+config_acquisition = load_yaml_config("simca/configs/acquisition.yml")
+
+dataset_name = "indian_pines"
+results_directory = "./data/results/lego_test_1"
+nb_of_acq = 10
+
+
+
+
+

Initialize the CassiSystem

+

Initialize the CassiSystem:

+
cassi_system = CassiSystem(system_config=config_system)
+
+
+
+
+

Load the Hyperspectral dataset

+

Load the hyperspectral dataset:

+
cassi_system.load_dataset(dataset_name, config_dataset["datasets directory"])
+
+
+
+
+

Generate Multiple Patterns for Acquisition

+

Generate multiple coded aperture patterns:

+
cassi_system.generate_multiple_patterns(config_patterns, nb_of_acq)
+
+
+
+
+

Propagate the Coded Aperture Grid

+

Propagate the coded aperture grid to the detector plane:

+
cassi_system.propagate_coded_aperture_grid()
+
+
+
+
+

Generate Multiple Filtering Cubes

+

Generate the multiple filtering cubes:

+
cassi_system.generate_multiple_filtering_cubes(nb_of_acq)
+
+
+
+
+

Simulate Multiple Acquisitions

+

Simulate multiple acquisitions:

+
cassi_system.multiple_image_acquisitions(use_psf=False, nb_of_filtering_cubes=nb_of_acq, chunck_size=50)
+
+
+
+
+

Save the Acquisition

+

Set up the results directory and save the acquisition:

+
cassi_system.result_directory = results_directory
+os.makedirs(results_directory, exist_ok=True)
+
+save_config_file("config_system", cassi_system.system_config, cassi_system.result_directory)
+save_config_file("config_pattern", config_patterns, cassi_system.result_directory)
+save_config_file("config_acquisition", config_acquisition, cassi_system.result_directory)
+save_data_in_hdf5("interpolated_scene", cassi_system.interpolated_scene, cassi_system.result_directory)
+save_data_in_hdf5("panchro", cassi_system.panchro, cassi_system.result_directory)
+save_data_in_hdf5("wavelengths", cassi_system.optical_model.system_wavelengths, cassi_system.result_directory)
+save_data_in_hdf5("list_of_compressed_measurements", cassi_system.list_of_measurements, cassi_system.result_directory)
+save_data_in_hdf5("list_of_filtering_cubes", cassi_system.list_of_filtering_cubes, cassi_system.result_directory)
+save_data_in_hdf5("list_of_patterns", cassi_system.list_of_patterns, cassi_system.result_directory)
+
+
+

Congratulations! You’ve successfully performed and saved multiple acquisitions using the CassiSystem class from the simca package.

+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/Tutorial_with_GUI.html b/Tutorial_with_GUI.html new file mode 100644 index 0000000..9166c0b --- /dev/null +++ b/Tutorial_with_GUI.html @@ -0,0 +1,365 @@ + + + + + + + Tutorial - Basics (with GUI) — simca 1.0 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Tutorial - Basics (with GUI)

+
+

Discover Main Features

+

The are 4 main features included in the application. These modules are not completely independent, using them sequentially is recommended for first usages.

+
    +
  • Dataset Analysis (only with GUI): for analyzing multi- or hyper-spectral datasets. It includes vizualization of data slices, spectrum analysis, and dataset labeling.

  • +
  • Optical Design: for evaluating and comparing the performances of various optical systems.

  • +
  • Coded Aperture: for generating various patterns and corresponding filtering cubes.

  • +
  • Acquisition: for simulating the acquisition process of coded images

  • +
+Docusaurus logo
+
+

Feature A : Dataset Analysis

+

The Dataset analysis tab is used to load & display datasets characteristics.

+layout dataset tab
+

1. Settings

+

Located on the left side of the application window.

+

Includes:

+
    +
  • +
    datasets directorypath to the datasets directory. All datasets be stored here.

    ATTENTION : click on the reload datasets button if you change the datasets directory path

    +
    +
    +
  • +
  • dataset name : a ComboBox displaying the datasets available in the selected directory

  • +
  • +
    loaded dataset dimensionsThese values are displayed once the dataset is loaded
      +
    • dimension along X : dimension of the dataset in the X direction (main spectral dispersion direction)

    • +
    • dimension along Y : dimension of the dataset in the Y direction (perpendicular to spectral dispersion direction)

    • +
    • number of spectral bands : number of spectral bands in the loaded dataset

    • +
    • minimum wavelength : minimum wavelength, usually corresponds to the spectral band n°0

    • +
    • maximum wavelength : maximum wavelength, usually corresponds to the last spectral band

    • +
    +
    +
    +
  • +
+
+
+

2. Load dataset button

+

By clicking on this button, the dataset selected in the dataset name ComboBox is loaded by the application.

+
+
+

3. Display windows

+

Located on the right side of the application window.

+

Once a dataset is loaded, one can inspect the spatial and spectral content of the dataset.

+
+

Hyperspectral cube

+

By moving the slider, you choose the spectral plane to be displayed.

+dataset layout 2
+
+

Compare Spectra

+dataset layout 2
+
+

Labelisation map

+dataset layout 2
+
+

Labelisation Histogram

+dataset layout 2
+
+
+
+

Feature B : Optical Design

+

The Optical Design tab is used for quick evaluation of the optical system characteristics (spectral dispersion & distortions).

+layout dataset tab
+

1. System Settings

+Docusaurus logo

Located on the left side of the application window.

+

Includes:

+
    +
  • +
    infos:
      +
    • system name: name of the studied system

    • +
    +
    +
    +
  • +
  • system architecture: All parameters that define the optical system and thus the spatial/spectral filtering

    +
    +
      +
    • system type

    • +
    • propagation type : model used for evaluating the spatial/spectral filtering

    • +
    • focal lens F [in micrometers]

    • +
    • +
      dispersive element:
        +
      • type: Prism or Grating

      • +
      • A (only when prism is selected): apex angle of the prism [in degrees]

      • +
      • m (only when grating is selected): considered order of diffraction [no units]

      • +
      • G (only when grating is selected): grating lines density [lines/mm]

      • +
      • delta alpha c [in degrees]

      • +
      • delta beta c [in degrees]

      • +
      • wavelength center [in nm]

      • +
      +
      +
      +
    • +
    +
    +
  • +
  • detector: parameters that define the detector grid

  • +
  • SLM: parameters that define the mask grid

  • +
  • spectral range: the spectral boundaries of the system and the number of spectral bands to consider

  • +
+
+
+

2. Run Simulation button

+

For each considered wavelength, the mask grid points coordinates is propagated onto the detector.

+
+
+

3. Display

+

Located on the right side of the application window. It can be used to analyse the mask grid object and its images in the detector plane.

+
+

Coded aperture grid

+Docusaurus logo
+
+

Propagated coded aperture grid

+

Spectral images of the input coded aperture grid for the minimum, maximum, and center wavelength.

+

ATTENTION: center wavelength (605 nm on the given example) is different from the system architecture center wavelength

+Docusaurus logo
+
+

Distortion maps

+

Get qualitative and quantitative distortion data:

+Docusaurus logo
+
+
+
+

Feature C : Pattern generation

+

The Coded Aperture tab is used for designing patterns and generating associated filtering cube.

+Coded Aperture design tab
+

1. Patterns Settings

+

Located on the left side of the application window.

+

The patterns characteristics depend on the chosen pattern type.

+

Available patterns:

+
    +
  • +
    slit:only one column of the coded aperture is open (perpendicular to the spectral dispersion), thus generating a spectral gradient type filter.
      +
    • slit position: relative to the center column between -100 and 100 coded aperture elements

    • +
    • slit width: between 1 and 30 coded aperture elements.

    • +
    +
    +
    +
  • +
  • random: random noise pattern with a normal law

  • +
  • blue noise: random noise pattern with boosted high frequencies

  • +
  • custon h5 pattern: custom pattern that should be a h5 file with a container named “pattern”. Once loaded, the pattern is cropped to fit SLM dimensions

  • +
+
+
+

2. Generate pattern

+

By clicking on this button, a 2D array representing a coded aperture pattern is generated through pattern generation functions contained in the functions_patterns_generation.py file.

+
+
+

3. Generate Filtering Cube button

+

By clicking on this button, a CassiSystem instance is creating the filtering cube corresponding to the detector dimensions along X and Y and the number of spectral bands.

+

Each slice of the filtering contains the projection of the coded aperture pattern on the detector grid.

+

ATTENTION : The spectral sampling of the filtering cube is not the same as the dataset’s sampling. It is defined in the spectral range section of the Optical Design tab. The wavelengths are equally spaced between “minimum wavelength” and “maximum wavelength”.

+
+
+

4. Display Pattern and Filtering Cube

+

Located on the right side of the application window.

+
+

Pattern

+

Shows the generated (or loaded) pattern:

+Pattern
+
+

Filtering Cube, slice by slice

+

Shows the corresponding filtering cube. By moving the slider, one can inspect the filtering cube slice by slice:

+filtering cube
+
+
+
+

Feature D : Acquisition

+

The Acquisition tab is used to generate compressed measurements given: a dataset and a filtering cube.

+

Note that the dataset is:

+
    +
  • cropped in the spatial dimensions to fit the filtering cube sampling (detector dimensions).

  • +
  • interpolated in the spectral dimension according to the filtering cube sampling.

  • +
+layout scene tab
+

1. Settings

+

For now, the GUI only includes one mode: single acquisition.

+

A Point-spread-function (PSF) can be added for more realism. For now, each slice of the filtered scene is convolved by the same kernel. A wavelength-dependent PSF will be added in the future.

+
+
+

2. Run Acquisition button

+

By clicking on this button:

+
    +
  • First, the dataset cube is cropped in the spatial dimensions and interpolated in the spectral dimension.

  • +
  • Second, a point by point multiplication is performed between the filtering cube and the reinterpolated scene.

  • +
+
+
+

3. Display measurements

+
+

compressed measurements

+

The image as measured by the detector.

+layout scene tab
+
+

Spectral images

+

Each slice of the filtered scene.

+layout scene tab
+
+

Panchromatic image

+

No spatial/spectral filtering, the interpolated scene is simply summed along its spectral dimension.

+layout scene tab
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_images/SIMCA_logo-2-cropped.png b/_images/SIMCA_logo-2-cropped.png new file mode 100644 index 0000000..e13a59d Binary files /dev/null and b/_images/SIMCA_logo-2-cropped.png differ diff --git a/_images/acquisition_tab.svg b/_images/acquisition_tab.svg new file mode 100644 index 0000000..be35deb --- /dev/null +++ b/_images/acquisition_tab.svg @@ -0,0 +1,130 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_images/distortion_maps.svg b/_images/distortion_maps.svg new file mode 100644 index 0000000..72dfdbb --- /dev/null +++ b/_images/distortion_maps.svg @@ -0,0 +1,9486 @@ + + + + + + + + 2023-05-17T18:31:36.489245 + image/svg+xml + + + Matplotlib v3.7.1, https://matplotlib.org/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_images/filtering-cube.svg b/_images/filtering-cube.svg new file mode 100644 index 0000000..447f8b0 --- /dev/null +++ b/_images/filtering-cube.svg @@ -0,0 +1,66 @@ + + + + diff --git a/_images/input_grid.svg b/_images/input_grid.svg new file mode 100644 index 0000000..dc65a66 --- /dev/null +++ b/_images/input_grid.svg @@ -0,0 +1,1506 @@ + + + + + + + + 2023-05-17T18:30:32.491407 + image/svg+xml + + + Matplotlib v3.7.1, https://matplotlib.org/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_images/layout_acquisition_1.svg b/_images/layout_acquisition_1.svg new file mode 100644 index 0000000..83268db --- /dev/null +++ b/_images/layout_acquisition_1.svg @@ -0,0 +1,63 @@ + + + + diff --git a/_images/layout_acquisition_2.svg b/_images/layout_acquisition_2.svg new file mode 100644 index 0000000..4c247c1 --- /dev/null +++ b/_images/layout_acquisition_2.svg @@ -0,0 +1,2634 @@ + + + + + + + + + + + + + + diff --git a/_images/layout_acquisition_3.svg b/_images/layout_acquisition_3.svg new file mode 100644 index 0000000..b955ae4 --- /dev/null +++ b/_images/layout_acquisition_3.svg @@ -0,0 +1,2305 @@ + + + + + + + + + + + + + + diff --git a/_images/layout_coded_aperture.svg b/_images/layout_coded_aperture.svg new file mode 100644 index 0000000..f352069 --- /dev/null +++ b/_images/layout_coded_aperture.svg @@ -0,0 +1,8405 @@ + + + +4 diff --git a/_images/layout_dataset_2.svg b/_images/layout_dataset_2.svg new file mode 100644 index 0000000..11eac54 --- /dev/null +++ b/_images/layout_dataset_2.svg @@ -0,0 +1,80 @@ + + + + + + + + + + + + + + + + + diff --git a/_images/layout_dataset_3.svg b/_images/layout_dataset_3.svg new file mode 100644 index 0000000..aacd0a2 --- /dev/null +++ b/_images/layout_dataset_3.svg @@ -0,0 +1,3527 @@ + + + + diff --git a/_images/layout_dataset_4.svg b/_images/layout_dataset_4.svg new file mode 100644 index 0000000..4e69ac4 --- /dev/null +++ b/_images/layout_dataset_4.svg @@ -0,0 +1,2014 @@ + + + + diff --git a/_images/layout_dataset_5.svg b/_images/layout_dataset_5.svg new file mode 100644 index 0000000..e5fd265 --- /dev/null +++ b/_images/layout_dataset_5.svg @@ -0,0 +1,1396 @@ + + + + + + + + 2023-05-20T00:17:56.600114 + image/svg+xml + + + Matplotlib v3.7.1, https://matplotlib.org/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_images/layout_dataset_tab.svg b/_images/layout_dataset_tab.svg new file mode 100644 index 0000000..b87dc9a --- /dev/null +++ b/_images/layout_dataset_tab.svg @@ -0,0 +1,150 @@ + + + + diff --git a/_images/layout_general.svg b/_images/layout_general.svg new file mode 100644 index 0000000..be413ef --- /dev/null +++ b/_images/layout_general.svg @@ -0,0 +1,10844 @@ + + + + diff --git a/_images/layout_optical_design_tab.svg b/_images/layout_optical_design_tab.svg new file mode 100644 index 0000000..82b3b1d --- /dev/null +++ b/_images/layout_optical_design_tab.svg @@ -0,0 +1,7117 @@ + + + + diff --git a/_images/mask_to_detector.svg b/_images/mask_to_detector.svg new file mode 100644 index 0000000..eda66dc --- /dev/null +++ b/_images/mask_to_detector.svg @@ -0,0 +1,3735 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_images/pattern_display.svg b/_images/pattern_display.svg new file mode 100644 index 0000000..4b38227 --- /dev/null +++ b/_images/pattern_display.svg @@ -0,0 +1,808 @@ + + + + diff --git a/_images/propagated_grids.svg b/_images/propagated_grids.svg new file mode 100644 index 0000000..7596ab6 --- /dev/null +++ b/_images/propagated_grids.svg @@ -0,0 +1,3062 @@ + + + + + + + + 2023-05-17T18:30:58.547144 + image/svg+xml + + + Matplotlib v3.7.1, https://matplotlib.org/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_modules/index.html b/_modules/index.html new file mode 100644 index 0000000..34c8c26 --- /dev/null +++ b/_modules/index.html @@ -0,0 +1,109 @@ + + + + + + Overview: module code — simca 1.0 documentation + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+ + +
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/simca/CassiSystem.html b/_modules/simca/CassiSystem.html new file mode 100644 index 0000000..571104d --- /dev/null +++ b/_modules/simca/CassiSystem.html @@ -0,0 +1,681 @@ + + + + + + simca.CassiSystem — simca 1.0 documentation + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for simca.CassiSystem

+from simca.OpticalModel import OpticalModel
+from simca.functions_acquisition import *
+from simca.functions_patterns_generation import *
+from simca.functions_scenes import *
+from simca.functions_general_purpose import *
+from scipy.signal import convolve
+
+
+
+
+[docs] +class CassiSystem(): + """Class that contains the cassi system main attributes and methods""" + + def __init__(self, system_config=None, system_config_path=None): + + """ + + Args: + system_config_path (str): path to the configs file + system_config (dict): system configuration + + """ + + self.set_up_system(system_config=system_config, system_config_path=system_config_path) + +
+[docs] + def update_config(self, system_config_path=None, system_config=None): + + """ + Update the system configuration file and re-initialize the grids for the coded aperture and the detector + + Args: + system_config_path (str): path to the configs file + system_config (dict): system configuration + Returns: + dict: updated system configuration + + """ + + self.set_up_system(system_config_path=system_config_path, system_config=system_config) + + return self.system_config
+ + +
+[docs] + def set_up_system(self, system_config_path=None, system_config=None): + + """ + Loading system config & initializing the grids coordinates for the coded aperture and the detector + + Args: + system_config_path (str): path to the configs file + system_config (dict): system configuration + + """ + + if system_config_path is not None: + self.system_config = load_yaml_config(system_config_path) + elif system_config is not None: + self.system_config = system_config + + self.optical_model = OpticalModel(self.system_config) + + self.X_coded_aper_coordinates, self.Y_coded_aper_coordinates = self.create_coordinates_grid( + self.system_config["coded aperture"]["number of pixels along X"], + self.system_config["coded aperture"]["number of pixels along Y"], + self.system_config["coded aperture"]["pixel size along X"], + self.system_config["coded aperture"]["pixel size along Y"]) + + self.X_detector_coordinates_grid, self.Y_detector_coordinates_grid = self.create_coordinates_grid( + self.system_config["detector"]["number of pixels along X"], + self.system_config["detector"]["number of pixels along Y"], + self.system_config["detector"]["pixel size along X"], + self.system_config["detector"]["pixel size along Y"])
+ + +
+[docs] + def load_dataset(self, directory, dataset_name): + """ + Loading the dataset and related attributes + + Args: + directory (str): name of the directory containing the dataset + dataset_name (str): dataset name + + Returns: + list: a list containing the dataset (shape= R_dts x C_dts x W_dts), the corresponding wavelengths (shape= W_dts), the labeled dataset, the label names and the ignored labels + """ + + dataset, wavelengths_vec, dataset_labels, label_names, ignored_labels = get_dataset(directory, dataset_name) + + self.dataset = dataset + self.dataset_labels = dataset_labels + self.dataset_wavelengths = wavelengths_vec + + # additional attributes + self.dataset_label_names = label_names + self.dataset_ignored_labels = ignored_labels + self.dataset_palette = palette_init(label_names) + + + list_dataset_data = [self.dataset, self.dataset_labels, self.dataset_wavelengths, self.dataset_label_names, + self.dataset_ignored_labels, self.dataset_palette] + + return list_dataset_data
+ + +
+[docs] + def interpolate_dataset_along_wavelengths(self, new_wavelengths_sampling, chunk_size): + """ + Interpolate the dataset cube along the wavelength axis to match the system sampling + + Args: + new_wavelengths_sampling (numpy.ndarray): new wavelengths on which to interpolate the dataset (shape = W) + chunk_size (int): chunk size for the multiprocessing + + Returns: + numpy.ndarray : interpolated dataset cube along the wavelength axis (shape = R_dts x C_dts x W) + + """ + try: + self.dataset + except : + raise ValueError("The dataset must be loaded first") + + if self.dataset_wavelengths[0] <= new_wavelengths_sampling[0] and self.dataset_wavelengths[-1] >= new_wavelengths_sampling[-1]: + + self.dataset_interpolated = interpolate_data_along_wavelength(self.dataset,self.dataset_wavelengths,new_wavelengths_sampling, chunk_size) + return self.dataset_interpolated + else: + raise ValueError("The new wavelengths sampling must be inside the dataset wavelengths range")
+ + + +
+[docs] + def generate_2D_pattern(self, config_pattern): + """ + Generate the coded aperture 2D pattern based on the "pattern" configuration file + + Args: + config_pattern (dict): coded-aperture pattern configuration + + Returns: + numpy.ndarray: coded-aperture 2D pattern based on the configuration file (shape = H x L) + """ + + pattern_type = config_pattern['pattern']['type'] + + if pattern_type == "random": + pattern= generate_random_pattern((self.system_config["coded aperture"]["number of pixels along Y"],self.system_config["coded aperture"]["number of pixels along X"]), + config_pattern['pattern']['ROM']) + + elif pattern_type == "slit": + pattern= generate_slit_pattern((self.system_config["coded aperture"]["number of pixels along Y"],self.system_config["coded aperture"]["number of pixels along X"]), + config_pattern['pattern']['slit position'], + config_pattern['pattern']['slit width']) + + elif pattern_type == "blue-noise type 1": + pattern= generate_blue_noise_type_1_pattern((self.system_config["coded aperture"]["number of pixels along Y"], self.system_config["coded aperture"]["number of pixels along X"])) + + elif pattern_type == "blue-noise type 2": + pattern= generate_blue_noise_type_2_pattern((self.system_config["coded aperture"]["number of pixels along Y"], self.system_config["coded aperture"]["number of pixels along X"])) + + elif pattern_type == "custom h5 pattern": + pattern= load_custom_pattern((self.system_config["coded aperture"]["number of pixels along Y"], self.system_config["coded aperture"]["number of pixels along X"]), + config_pattern['pattern']['file path']) + else: + raise ValueError("patterntype is not supported for single patterngeneration, change it in the 'pattern.yml' config file") + + self.pattern= pattern + + return pattern
+ + +
+[docs] + def generate_multiple_patterns(self, config_pattern, number_of_patterns): + """ + Generate a list of coded aperture patterns based on the "pattern" configuration file + + Args: + config_pattern (dict): pattern configuration + number_of_patterns (int): number of patterns to generate + + Returns: + list: coded aperture patterns (numpy.ndarray) generated according to the configuration file + """ + list_of_patterns = list() + pattern_type = config_pattern['pattern']['type'] + + if pattern_type == "random": + for i in range(number_of_patterns): + pattern= generate_random_pattern((self.system_config["coded aperture"]["number of pixels along Y"], self.system_config["coded aperture"]["number of pixels along X"]),config_pattern['pattern']['ROM']) + list_of_patterns.append(pattern) + + elif pattern_type == "slit": + # mmmmh you are weird, why would you want to do that ? + for i in range(number_of_patterns): + pattern= generate_slit_pattern((self.system_config["coded aperture"]["number of pixels along Y"], self.system_config["coded aperture"]["number of pixels along X"]), + config_pattern['pattern']['slit position'], + config_pattern['pattern']['slit width']) + list_of_patterns.append(pattern) + + elif pattern_type == "LN-random": + list_of_patterns = generate_ln_orthogonal_pattern(size=(self.system_config["coded aperture"]["number of pixels along Y"], + self.system_config["coded aperture"]["number of pixels along X"]), + W=self.system_config["spectral range"]["number of spectral samples"], + N=number_of_patterns) + + elif pattern_type == "blue-noise type 1": + + for i in range(number_of_patterns): + pattern= generate_blue_noise_type_1_pattern((self.system_config["coded aperture"]["number of pixels along Y"], self.system_config["coded aperture"]["number of pixels along X"])) + list_of_patterns.append(pattern) + + elif pattern_type == "blue-noise type 2": + + for i in range(number_of_patterns): + pattern= generate_blue_noise_type_2_pattern((self.system_config["coded aperture"]["number of pixels along Y"], self.system_config["coded aperture"]["number of pixels along X"])) + list_of_patterns.append(pattern) + + elif pattern_type == "custom h5": + list_of_patterns = load_custom_pattern((self.system_config["coded aperture"]["number of pixels along Y"], self.system_config["coded aperture"]["number of pixels along X"]), + config_pattern['pattern']['file path']) + + else: + print("pattern type is not supported") + list_of_patterns = None + + self.list_of_patterns = list_of_patterns + + return self.list_of_patterns
+ + + + +
+[docs] + def generate_filtering_cube(self): + """ + Generate filtering cube : each slice of the cube is a propagated pattern interpolated on the detector grid + + Returns: + numpy.ndarray: filtering cube generated according to the optical system & the pattern configuration (R x C x W) + + """ + + self.filtering_cube = interpolate_data_on_grid_positions(data=self.pattern, + X_init=self.X_coordinates_propagated_coded_aperture, + Y_init=self.Y_coordinates_propagated_coded_aperture, + X_target=self.X_detector_coordinates_grid, + Y_target=self.Y_detector_coordinates_grid) + + + return self.filtering_cube
+ + +
+[docs] + def generate_multiple_filtering_cubes(self, number_of_patterns): + """ + Generate multiple filtering cubes, each cube corresponds to a pattern, and for each pattern, each slice is a propagated coded apertureinterpolated on the detector grid + + Args: + number_of_patterns (int): number of patterns to generate + Returns: + list: filtering cubes generated according to the current optical system and the pattern configuration + + """ + self.list_of_filtering_cubes = [] + + for idx in range(number_of_patterns): + + self.filtering_cube = interpolate_data_on_grid_positions(data=self.list_of_patterns[idx], + X_init=self.X_coordinates_propagated_coded_aperture, + Y_init=self.Y_coordinates_propagated_coded_aperture, + X_target=self.X_detector_coordinates_grid, + Y_target=self.Y_detector_coordinates_grid) + + self.list_of_filtering_cubes.append(self.filtering_cube) + + return self.list_of_filtering_cubes
+ + +
+[docs] + def image_acquisition(self, use_psf=False, chunck_size=50): + """ + Run the acquisition/measurement process depending on the cassi system type + + Args: + chunck_size (int): default block size for the interpolation + + Returns: + numpy.ndarray: compressed measurement (R x C) + """ + + dataset = self.interpolate_dataset_along_wavelengths(self.optical_model.system_wavelengths, chunck_size) + + if dataset is None: + return None + dataset_labels = self.dataset_labels + + if self.system_config["system architecture"]["system type"] == "DD-CASSI": + + try: + self.filtering_cube + except: + return print("Please generate filtering cube first") + + scene = match_dataset_to_instrument(dataset, self.filtering_cube) + + measurement_in_3D = generate_dd_measurement(scene, self.filtering_cube, chunck_size) + + self.last_filtered_interpolated_scene = measurement_in_3D + self.interpolated_scene = scene + + if dataset_labels is not None: + scene_labels = match_dataset_labels_to_instrument(dataset_labels, self.filtering_cube) + self.scene_labels = scene_labels + + + elif self.system_config["system architecture"]["system type"] == "SD-CASSI": + + X_coded_aper_coordinates_crop = crop_center(self.X_coded_aper_coordinates,dataset.shape[1], dataset.shape[0]) + Y_coded_aper_coordinates_crop = crop_center(self.Y_coded_aper_coordinates,dataset.shape[1], dataset.shape[0]) + + scene = match_dataset_to_instrument(dataset, X_coded_aper_coordinates_crop) + + pattern_crop = crop_center(self.pattern, scene.shape[1], scene.shape[0]) + + filtered_scene = scene * np.tile(pattern_crop[..., np.newaxis], (1, 1, scene.shape[2])) + + self.propagate_coded_aperture_grid(X_input_grid=X_coded_aper_coordinates_crop, Y_input_grid=Y_coded_aper_coordinates_crop) + + sd_measurement = interpolate_data_on_grid_positions(filtered_scene, + self.X_coordinates_propagated_coded_aperture, + self.Y_coordinates_propagated_coded_aperture, + self.X_detector_coordinates_grid, + self.Y_detector_coordinates_grid) + + self.last_filtered_interpolated_scene = sd_measurement + self.interpolated_scene = scene + + if dataset_labels is not None: + scene_labels = match_dataset_labels_to_instrument(dataset_labels, self.last_filtered_interpolated_scene) + self.scene_labels = scene_labels + + self.panchro = np.sum(self.interpolated_scene, axis=2) + + if use_psf: + self.apply_psf() + else: + print("No PSF was applied") + + # Calculate the other two arrays + self.measurement = np.sum(self.last_filtered_interpolated_scene, axis=2) + + + return self.measurement
+ + +
+[docs] + def multiple_image_acquisitions(self, use_psf=False, nb_of_filtering_cubes=1,chunck_size=50): + """ + Run the acquisition process depending on the cassi system type + + Args: + chunck_size (int): default block size for the dataset + + Returns: + list: list of compressed measurements (list of numpy.ndarray of size R x C) + """ + + dataset = self.interpolate_dataset_along_wavelengths(self.optical_model.system_wavelengths, chunck_size) + if dataset is None: + return None + dataset_labels = self.dataset_labels + + self.list_of_filtered_scenes = [] + + if self.system_config["system architecture"]["system type"] == "DD-CASSI": + try: + self.list_of_filtering_cubes + except: + return print("Please generate list of filtering cubes first") + + scene = match_dataset_to_instrument(dataset, self.list_of_filtering_cubes[0]) + + if dataset_labels is not None: + scene_labels = match_dataset_labels_to_instrument(dataset_labels, self.filtering_cube) + self.scene_labels = scene_labels + + self.interpolated_scene = scene + + for i in range(nb_of_filtering_cubes): + + filtered_scene = generate_dd_measurement(scene, self.list_of_filtering_cubes[i], chunck_size) + self.list_of_filtered_scenes.append(filtered_scene) + + + elif self.system_config["system architecture"]["system type"] == "SD-CASSI": + + X_coded_aper_coordinates_crop = crop_center(self.X_coded_aper_coordinates,dataset.shape[1], dataset.shape[0]) + Y_coded_aper_coordinates_crop = crop_center(self.Y_coded_aper_coordinates,dataset.shape[1], dataset.shape[0]) + + + scene = match_dataset_to_instrument(dataset, X_coded_aper_coordinates_crop) + + if dataset_labels is not None: + scene_labels = match_dataset_labels_to_instrument(dataset_labels, self.filtering_cube) + self.scene_labels = scene_labels + + self.interpolated_scene = scene + + for i in range(nb_of_filtering_cubes): + + mask_crop = crop_center(self.list_of_patterns[i], scene.shape[1], scene.shape[0]) + + filtered_scene = scene * np.tile(mask_crop[..., np.newaxis], (1, 1, scene.shape[2])) + + self.propagate_coded_aperture_grid(X_input_grid=X_coded_aper_coordinates_crop, Y_input_grid=Y_coded_aper_coordinates_crop) + + sd_measurement_cube = interpolate_data_on_grid_positions(filtered_scene, + self.X_coordinates_propagated_coded_aperture, + self.Y_coordinates_propagated_coded_aperture, + self.X_detector_coordinates_grid, + self.Y_detector_coordinates_grid) + self.list_of_filtered_scenes.append(sd_measurement_cube) + + self.panchro = np.sum(self.interpolated_scene, axis=2) + + if use_psf: + self.apply_psf() + else: + print("No PSF was applied") + + # Calculate the other two arrays + self.list_of_measurements = [] + for i in range(nb_of_filtering_cubes): + self.list_of_measurements.append(np.sum(self.list_of_filtered_scenes[i], axis=2)) + + return self.list_of_measurements
+ + + + +
+[docs] + def create_coordinates_grid(self, nb_of_pixels_along_x, nb_of_pixels_along_y, delta_x, delta_y): + """ + Create a coordinates grid for a given number of samples along X and Y axis and a given pixel size + + Args: + nb_of_pixels_along_x (int): number of samples along X axis + nb_of_pixels_along_y (int): number of samples along Y axis + delta_x (float): pixel size along X axis + delta_y (float): pixel size along Y axis + + Returns: + tuple: X coordinates grid (numpy.ndarray) and Y coordinates grid (numpy.ndarray) + """ + x = np.arange(-(nb_of_pixels_along_x-1) * delta_x / 2, (nb_of_pixels_along_x+1) * delta_x / 2,delta_x) + y = np.arange(-(nb_of_pixels_along_y-1) * delta_y / 2, (nb_of_pixels_along_y+1) * delta_y / 2, delta_y) + + + # Create a two-dimensional grid of coordinates + X_input_grid, Y_input_grid = np.meshgrid(x, y) + + return X_input_grid, Y_input_grid
+ + +
+[docs] + def propagate_coded_aperture_grid(self, X_input_grid=None, Y_input_grid=None): + """ + Propagate the coded_aperture pattern through one CASSI system + + Args: + X_input_grid (numpy.ndarray): x coordinates grid + Y_input_grid (numpy.ndarray): y coordinates grid + + Returns: + tuple: propagated coded aperture x coordinates grid in the detector plane (3D numpy.ndarray), propagated coded aperture y coordinates grid in the detector plane (3D numpy.ndarray), 1D array of propagated coded aperture x coordinates (numpy.ndarray), 1D array of system wavelengths (numpy.ndarray) + """ + + if X_input_grid is None: + X_input_grid = self.X_coded_aper_coordinates + if Y_input_grid is None: + Y_input_grid = self.Y_coded_aper_coordinates + + propagation_type = self.system_config["system architecture"]["propagation type"] + + if propagation_type == "simca": + self.X_coordinates_propagated_coded_aperture, self.Y_coordinates_propagated_coded_aperture = self.optical_model.propagation_with_distorsions(X_input_grid, Y_input_grid) + + if propagation_type == "higher-order": + self.X_coordinates_propagated_coded_aperture, self.Y_coordinates_propagated_coded_aperture = self.optical_model.propagation_with_no_distorsions(X_input_grid, Y_input_grid) + + self.optical_model.check_if_sampling_is_sufficiant() + + self.X_coordinates_propagated_coded_aperture = np.nan_to_num(self.X_coordinates_propagated_coded_aperture) + self.Y_coordinates_propagated_coded_aperture = np.nan_to_num(self.Y_coordinates_propagated_coded_aperture) + + return self.X_coordinates_propagated_coded_aperture, self.Y_coordinates_propagated_coded_aperture, self.optical_model.system_wavelengths
+ + + +
+[docs] + def apply_psf(self): + """ + Apply the PSF to the last measurement + + Returns: + numpy.ndarray: last measurement cube convolved with by PSF (shape= R x C x W). Each slice of the 3D filtered scene is convolved with the PSF + """ + if (self.optical_model.psf is not None) and (self.last_filtered_interpolated_scene is not None): + # Expand the dimensions of the 2D matrix to match the 3D matrix + psf_3D = np.expand_dims(self.optical_model.psf, axis=-1) + + # Perform the convolution using convolve + result = convolve(self.last_filtered_interpolated_scene, psf_3D, mode='same') + result_panchro = convolve(self.panchro, self.optical_model.psf, mode='same') + + else: + print("No PSF or last measurement to apply PSF") + result = self.last_filtered_interpolated_scene + result_panchro = self.panchro + + self.last_filtered_interpolated_scene = result + self.panchro = result_panchro + + return self.last_filtered_interpolated_scene
+ + + + +
+[docs] + def save_acquisition(self, config_pattern, config_acquisition): + """ + Save the all data related to an acquisition + + Args: + config_pattern (dict): configuration dictionary related to pattern generation + config_acquisition (dict): configuration dictionary related to acquisition parameters + + """ + + self.result_directory = initialize_acquisitions_directory(config_acquisition) + + save_config_file("config_system",self.system_config,self.result_directory) + save_config_file("config_pattern",config_pattern,self.result_directory) + save_config_file("config_acquisition",config_acquisition,self.result_directory) + save_data_in_hdf5("interpolated_scene",self.interpolated_scene, self.result_directory) + try: + save_data_in_hdf5("scene_labels",self.scene_labels,self.result_directory) + except : + pass + save_data_in_hdf5("filtered_interpolated_scene",self.last_filtered_interpolated_scene, self.result_directory) + save_data_in_hdf5("measurement",self.measurement,self.result_directory) + save_data_in_hdf5("panchro",self.panchro,self.result_directory) + save_data_in_hdf5("filtering_cube",self.filtering_cube,self.result_directory) + save_data_in_hdf5("pattern",self.pattern,self.result_directory) + save_data_in_hdf5("wavelengths",self.optical_model.system_wavelengths,self.result_directory) + + print("Acquisition saved in " + self.result_directory)
+
+ +
+ +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/simca/OpticalModel.html b/_modules/simca/OpticalModel.html new file mode 100644 index 0000000..b4f2bcd --- /dev/null +++ b/_modules/simca/OpticalModel.html @@ -0,0 +1,659 @@ + + + + + + simca.OpticalModel — simca 1.0 documentation + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for simca.OpticalModel

+from simca.functions_general_purpose import *
+
+
+[docs] +class OpticalModel: + """ + Class that contains the optical model caracteristics and propagation models + """ + def __init__(self, system_config): + self.set_optical_config(system_config) + +
+[docs] + def update_config(self, new_config): + """ + Update the optical model configuration + + Args: + new_config (dict): new configuration + + """ + self.set_optical_config(new_config)
+ + +
+[docs] + def set_optical_config(self, config): + """ + Set the optical model configuration + + Args: + config (dict): configuration file + + """ + + self.system_config = config + + self.dispersive_element_type = config["system architecture"]["dispersive element"]["type"] + self.A = math.radians(config["system architecture"]["dispersive element"]["A"]) + self.G = config["system architecture"]["dispersive element"]["G"] + self.lba_c = config["system architecture"]["dispersive element"]["wavelength center"] + self.m = config["system architecture"]["dispersive element"]["m"] + self.F = config["system architecture"]["focal lens"] + self.delta_alpha_c = math.radians(config["system architecture"]["dispersive element"]["delta alpha c"]) + self.delta_beta_c = math.radians(config["system architecture"]["dispersive element"]["delta beta c"]) + + self.nb_of_det_pixels_X = config["detector"]["number of pixels along X"] + self.nb_of_det_pixels_Y = config["detector"]["number of pixels along Y"] + self.nb_of_coded_apert_pixels_X = config["coded aperture"]["number of pixels along X"] + self.nb_of_coded_apert_pixels_Y = config["coded aperture"]["number of pixels along Y"] + + self.set_wavelengths(config["spectral range"]["wavelength min"], + config["spectral range"]["wavelength max"], + config["spectral range"]["number of spectral samples"])
+ + +
+[docs] + def propagation_with_distorsions(self, X_input_grid, Y_input_grid): + """ + Propagate the coded aperture coded_aperture through one CASSI system + + Args: + X_input_grid (numpy.ndarray): x coordinates grid + Y_input_grid (numpy.ndarray): y coordinates grid + + Returns: + tuple: X coordinates of the propagated coded aperture grids, Y coordinates of the propagated coded aperture grids + """ + + self.calculate_central_dispersion() + + X_coordinates_propagated_coded_aperture = np.zeros((X_input_grid.shape[0],X_input_grid.shape[1], + self.nb_of_spectral_samples)) + Y_coordinates_propagated_coded_aperture = np.zeros((X_input_grid.shape[0],X_input_grid.shape[1], + self.nb_of_spectral_samples)) + + X_input_grid_flatten = X_input_grid.flatten() + Y_input_grid_flatten = Y_input_grid.flatten() + + for idx,lba in enumerate(np.linspace(self.system_wavelengths[0], self.system_wavelengths[-1],self.nb_of_spectral_samples)): + + n_array_flatten = np.full(X_input_grid_flatten.shape, self.sellmeier(lba)) + lba_array_flatten = np.full(X_input_grid_flatten.shape, lba) + + X_propagated_coded_aperture, Y_propagated_coded_aperture = self.propagate_through_arm(X_input_grid_flatten,Y_input_grid_flatten,n=n_array_flatten,lba=lba_array_flatten) + + X_coordinates_propagated_coded_aperture[:,:,idx] = X_propagated_coded_aperture.reshape(X_input_grid.shape) + Y_coordinates_propagated_coded_aperture[:,:,idx] = Y_propagated_coded_aperture.reshape(Y_input_grid.shape) + + return X_coordinates_propagated_coded_aperture, Y_coordinates_propagated_coded_aperture
+ + +
+[docs] + def propagation_with_no_distorsions(self, X_input_grid, Y_input_grid): + """ + Vanilla Propagation model used in most cassi acquisitions simulation. + + Args: + X_input_grid (numpy.ndarray): X coordinates of the grid to be propagated (2D) + Y_input_grid (numpy.ndarray): Y coordinates of the grid to be propagated (2D) + + Returns: + tuple: X coordinates grids of the propagated coded apertures, Y coordinates grids of the propagated coded apertures + """ + + self.calculate_central_dispersion() + + X_coordinates_propagated_coded_aperture = np.zeros((X_input_grid.shape[0],X_input_grid.shape[1], + self.nb_of_spectral_samples)) + Y_coordinates_propagated_coded_aperture = np.zeros((X_input_grid.shape[0],X_input_grid.shape[1], + self.nb_of_spectral_samples)) + + for idx, wav in enumerate(self.system_wavelengths): + + X_ref = -1 * X_input_grid + self.X0_propagated[idx] + Y_ref = -1 * Y_input_grid + self.Y0_propagated[idx] + + X_coordinates_propagated_coded_aperture[:,:,idx] = X_ref + Y_coordinates_propagated_coded_aperture[:,:,idx] = Y_ref + + return X_coordinates_propagated_coded_aperture, Y_coordinates_propagated_coded_aperture
+ + +
+[docs] + def set_wavelengths(self, wavelength_min, wavelength_max, nb_of_spectral_samples): + """ + Set the wavelengths range of the optical system + + Args: + wavelength_min (float): minimum wavelength of the system + wavelength_max (float): maximum wavelength of the system + nb_of_spectral_samples (int): number of spectral samples of the system + Returns: + + """ + self.wavelength_min = wavelength_min + self.wavelength_max = wavelength_max + self.nb_of_spectral_samples = nb_of_spectral_samples + + self.system_wavelengths = np.linspace(self.wavelength_min,self.wavelength_max,self.nb_of_spectral_samples)
+ + +
+[docs] + def calculate_central_dispersion(self): + """ + Calculate the dispersion related to the central pixel of the coded aperture + + Returns: + numpy.float: spectral dispersion of the central pixel of the coded aperture + """ + + self.alpha_c = self.calculate_alpha_c() + + X0_coordinates_array_flatten = np.zeros(self.system_wavelengths.shape[0]) + Y0_coordinates_array_flatten = np.zeros(self.system_wavelengths.shape[0]) + lba_array_flatten = self.system_wavelengths + + n_array_flatten = np.full(lba_array_flatten.shape, self.sellmeier(lba_array_flatten)) + + X0_propagated, Y0_propagated = self.propagate_through_arm(X_vec_in=X0_coordinates_array_flatten,Y_vec_in=Y0_coordinates_array_flatten,n=n_array_flatten,lba=lba_array_flatten) + + self.X0_propagated, self.Y0_propagated = X0_propagated, Y0_propagated + + self.central_distorsion_in_X = np.abs(self.X0_propagated[-1] - self.X0_propagated[0]) + + return self.central_distorsion_in_X
+ + +
+[docs] + def propagate_through_arm(self, X_vec_in, Y_vec_in, n, lba): + + """ + Propagate the light through one system arm : (lens + dispersive element + lens) + + Args: + X_vec_in (numpy.ndarray) : X coordinates of the coded aperture pixels (1D array) + Y_vec_in (numpy.ndarray) : Y coordinates of the coded aperture pixels (1D array) + n (numpy.ndarray) : refractive indexes of the system (at the corresponding wavelength) + lba (numpy.ndarray) : wavelengths + + Returns: + tuple: flatten arrays corresponding to the propagated X and Y coordinates + """ + + dispersive_element_type = self.dispersive_element_type + A = self.A + G = self.G + m = self.m + F = self.F + delta_alpha_c = self.delta_alpha_c + delta_beta_c = self.delta_beta_c + alpha_c = self.alpha_c + alpha_c_transmis = self.alpha_c_transmis + + + if dispersive_element_type == "prism": + + angle_with_P1 = alpha_c - A / 2 + delta_alpha_c + angle_with_P2 = alpha_c_transmis - A / 2 - delta_alpha_c + + k = self.model_Lens_pos_to_angle(X_vec_in, Y_vec_in, F) + # Rotation in relation to P1 around the Y axis + + k_1 = rotation_y(angle_with_P1) @ k[:, 0, :] + # Rotation in relation to P1 around the X axis + k_2 = rotation_x(delta_beta_c) @ k_1 + # Rotation of P1 in relation to frame_in along the new Y axis + k_3 = rotation_y(A / 2) @ k_2 + + norm_k = np.sqrt(k_3[0] ** 2 + k_3[1] ** 2 + k_3[2] ** 2) + k_3 /= norm_k + + k_out_p = self.model_Prism_angle_to_angle(k_3, n, A) + k_out_p = k_out_p * norm_k + + k_3_bis = np.dot(rotation_y(A / 2), k_out_p) + + # Rotation in relation to P2 around the X axis + k_2_bis = np.dot(rotation_x(-delta_beta_c), k_3_bis) + # Rotation in relation to P2 around the Y axis + k_1_bis = np.dot(rotation_y(angle_with_P2), k_2_bis) + + X_vec_out, Y_vec_out = self.model_Lens_angle_to_position(k_1_bis, F) + + + elif dispersive_element_type == "grating": + + angle_with_P1 = alpha_c - delta_alpha_c + angle_with_P2 = alpha_c_transmis + delta_alpha_c + + k = self.model_Lens_pos_to_angle(X_vec_in, Y_vec_in, F) + # Rotation in relation to P1 around the Y axis + + k_1 = rotation_y(angle_with_P1) @ k[:, 0, :] + # Rotation in relation to P1 around the X axis + k_2 = rotation_x(delta_beta_c) @ k_1 + + k_3 = rotation_y(0) @ k_2 + norm_k = np.sqrt(k_3[0] ** 2 + k_3[1] ** 2 + k_3[2] ** 2) + k_3 /= norm_k + + k_out_p = self.model_Grating_angle_to_angle(k_3, lba, m, G) + k_out_p = k_out_p * norm_k + + k_3_bis = np.dot(rotation_y(0), k_out_p) + + # Rotation in relation to P2 around the X axis + k_2_bis = np.dot(rotation_x(-delta_beta_c), k_3_bis) + # Rotation in relation to P2 around the Y axis + k_1_bis = np.dot(rotation_y(angle_with_P2), k_2_bis) + + X_vec_out, Y_vec_out = self.model_Lens_angle_to_position(k_1_bis, F) + + else: + raise Exception("dispersive_element_type should be prism or grating") + + return X_vec_out, Y_vec_out
+ + +
+[docs] + def model_Grating_angle_to_angle(self,k_in, lba, m, G): + """ + Model of the grating + + Args: + k_in (numpy.ndarray) : wave vector of the incident ray (shape = 3 x N) + lba (numpy.ndarray) : wavelengths (shape = N) -- in nm + m (float) : diffraction order of the grating -- no units + G (float) : lines density of the grating -- in lines/mm + + Returns: + numpy.ndarray: wave vector of the outgoing ray (shape = 3 x N) + + """ + + alpha_in = np.arctan(k_in[0]) * np.sqrt(1 + np.tan(k_in[0])**2 + np.tan(k_in[1])**2) + beta_in = np.arctan(k_in[1]) * np.sqrt(1 + np.tan(k_in[0])**2 + np.tan(k_in[1])**2) + + alpha_out = -1*np.arcsin(m * lba*10**-9 * G * 10**3 - np.sin(alpha_in)) + beta_out = beta_in + + + k_out = [np.sin(alpha_out) * np.cos(beta_out), + np.sin(beta_out)*np.cos(alpha_out), + np.cos(alpha_out) * np.cos(beta_out)] + + return k_out
+ + +
+[docs] + def simplified_grating_in_out(self, alpha,lba,m,G): + """ + Model 1D of the grating in the dispersion direction + + Args: + alpha (numpy.ndarray or float) : angle of the incident ray (shape = N) -- in radians + lba (numpy.ndarray or float) : wavelengths (shape = N) -- in nm + m (float) : diffraction order of the grating -- no units + G (float) : lines density of the grating -- in lines/mm + + Returns: + numpy.ndarray: angle of the outgoing ray (shape = N) -- in radians + + """ + + alpha_out = np.arcsin(m * lba * 10 ** -9 * G * 10 ** 3 - np.sin(alpha)) + + return alpha_out
+ + +
+[docs] + def model_Lens_angle_to_position(self,k_in,F): + """ + Model of the lens : angle to position + + Args: + k_in (numpy.ndarray) : wave vector of the incident ray (shape = 3 x N) + F (float) : focal length of the lens -- in um + + Returns: + tuple: position in the image plane (X,Y) -- in um + + """ + + alpha = np.arctan(k_in[0] / k_in[2]) + beta = np.arctan(k_in[1] / k_in[2]) + + x = F * np.tan(alpha) + y = F * np.tan(beta) + + return x, y
+ + +
+[docs] + def model_Prism_angle_to_angle(self,k0, n,A): + """ + Ray tracing through the prism + + Args: + k0 (numpy.ndarray) : wave vector of the incident ray (shape = 3 x N) + n (numpy.ndarray) : refractive index of the prism (shape = N) + A (float) : angle of the prism -- in radians + + Returns: + numpy.ndarray: wave vector of the outgoing ray (shape = 3 x N) + + """ + + kp = np.array([k0[0], k0[1], np.sqrt(n ** 2 - k0[0] ** 2 - k0[1] ** 2)]) + + kp_r = np.matmul(rotation_y(-A), kp) + + kout = [kp_r[0], kp_r[1], np.sqrt(1 - kp_r[0] ** 2 - kp_r[1] ** 2)] + + return kout
+ + + +
+[docs] + def model_Lens_pos_to_angle(self,x_obj, y_obj, F): + """ + Model of the lens : position to angle + + Args: + x_obj (numpy.ndarray) : position X in the image plane (shape = N) -- in um + y_obj (numpy.ndarray) : position Y in the image plane (shape = N) -- in um + F (float) : focal length of the lens -- in um + + Returns: + numpy.ndarray: wave vector of the outgoing ray (shape = 3 x N) + + """ + + alpha = -1*np.arctan(x_obj / F) + beta = -1*np.arctan(y_obj / F) + + k_out = np.array([[np.sin(alpha) * np.cos(beta)], + [np.sin(beta)*np.cos(alpha)], + [np.cos(alpha) * np.cos(beta)]]) + + return k_out
+ + +
+[docs] + def calculate_alpha_c(self): + """ + Calculate the relative angle of incidence between the lenses and the dispersive element + + Returns: + float: angle of incidence + """ + if self.dispersive_element_type == "prism": + self.Dm = self.calculate_minimum_deviation(self.sellmeier(self.lba_c), self.A) + self.alpha_c = self.get_incident_angle_min_dev(self.A,self.Dm) + self.alpha_c_transmis = self.alpha_c + + if self.dispersive_element_type == "grating": + self.alpha_c = 0 + self.alpha_c_transmis = self.simplified_grating_in_out(self.alpha_c,self.lba_c,self.m,self.G) + + return self.alpha_c
+ + + +
+[docs] + def calculate_minimum_deviation(self,n, A): + """ + minimum deviation angle of a prism of index n and apex angle A + + Args: + n (float or numpy.ndarray): index of the prism -- no units + A (float): apex angle of the prism -- in radians + + Returns: + float or numpy.ndarray: minimum deviation angle -- in radians + """ + return 2 * np.arcsin(n * np.sin(A / 2)) - A
+ + +
+[docs] + def get_incident_angle_min_dev(self,A, D_m): + """ + Calculate the angle of incidence corresponding to the minimum deviation angle + + Args: + A (float): apex angle of the prism -- in radians + D_m (float): minimum deviation angle -- in radians + + Returns: + float: angle of incidence corresponding to minimum of deviation -- in radians + """ + return (A + D_m) / 2
+ + + +
+[docs] + def sellmeier(self,lambda_, glass_type="BK7"): + """ + Evaluating the refractive index value of a prism for a given lambda based on Sellmeier equation + + Args: + lambda_ (numpy.ndarray of float) : wavelength in nm + + Returns: + numpy.ndarray of float: index value corresponding to the input wavelength + + """ + + if glass_type == "BK7": + B1 = 1.03961212 + B2 = 0.231792344 + B3 = 1.01046945 + C1 = 6.00069867 * (10 ** -3) + C2 = 2.00179144 * (10 ** -2) + C3 = 1.03560653 * (10 ** 2) + + else : + raise Exception("glass_type is Unknown") + + lambda_in_mm = lambda_ / 1000 + + n = np.sqrt(1 + B1 * lambda_in_mm ** 2 / (lambda_in_mm ** 2 - C1) + B2 * lambda_in_mm ** 2 / ( + lambda_in_mm ** 2 - C2) + B3 * lambda_in_mm ** 2 / (lambda_in_mm ** 2 - C3)) + + return n
+ + +
+[docs] + def generate_2D_gaussian(self,radius, sample_size_x, sample_size_y, nb_of_samples): + """ + Generate a 2D Gaussian of a given radius + + Args: + radius (float): radius of the Gaussian + sample_size_x (float): size of each sample along the X axis + sample_size_y (float): size of each sample along the Y axis + nb_of_samples (int): number of samples along each axis + + Returns: + numpy.ndarray: 2D Gaussian shape array + """ + + # Define the grid + grid_size_x = sample_size_x * (nb_of_samples - 1) + grid_size_y = sample_size_y * (nb_of_samples - 1) + x = np.linspace(-grid_size_x / 2, grid_size_x / 2, nb_of_samples) + y = np.linspace(-grid_size_y / 2, grid_size_y / 2, nb_of_samples) + X, Y = np.meshgrid(x, y) + + # Compute the 2D Gaussian function + gaussian_2d = np.exp(-(X ** 2 + Y ** 2) / (2 * radius ** 2)) + + return gaussian_2d
+ +
+[docs] + def generate_psf(self, type, radius): + """ + Generate a PSF + + Args: + type (str): type of PSF to generate + radius (float): radius of the PSF + + Returns: + numpy.ndarray: PSF generated (shape = R x C) + """ + + if type == "Gaussian": + PSF = self.generate_2D_gaussian(radius, self.system_config["detector"]["pixel size along X"], + self.system_config["detector"]["pixel size along Y"], 10) + self.psf = PSF + + return self.psf
+ + +
+[docs] + def check_if_sampling_is_sufficiant(self): + """ + Check if the sampling is sufficiant to avoid aliasing. + + Returns: + float: number of sample points per pixel + + """ + + pix_size = self.system_config["detector"]["pixel size along X"] + nb_of_system_wavelengths = self.system_wavelengths.shape[0] + + nb_of_sample_points_per_pix = pix_size / (self.central_distorsion_in_X / nb_of_system_wavelengths ) + print("number of spectral sample points per pixel =",nb_of_sample_points_per_pix) + + if nb_of_sample_points_per_pix < 2: + + print("The 'number of spectral samples' (cf. system config) is not sufficiant to avoid weird sampling effect( aliasing ?). RAISE IT !") + + return nb_of_sample_points_per_pix
+
+ +
+ +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/simca/functions_acquisition.html b/_modules/simca/functions_acquisition.html new file mode 100644 index 0000000..817f589 --- /dev/null +++ b/_modules/simca/functions_acquisition.html @@ -0,0 +1,368 @@ + + + + + + simca.functions_acquisition — simca 1.0 documentation + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for simca.functions_acquisition

+import numpy as np
+from scipy.interpolate import griddata
+from tqdm import tqdm
+import multiprocessing as mp
+from multiprocessing import Pool
+
+
+
+[docs] +def generate_sd_measurement_cube(filtered_scene,X_input, Y_input, X_target, Y_target,grid_type,interp_method): + """ + Generate SD measurement cube from the coded aperture and the scene. + For Single-Disperser CASSI systems, the scene is filtered then propagated in the detector plane. + + Args: + filtered_scene (numpy.ndarray): filtered scene (shape = R x C x W) + + Returns: + numpy.ndarray: SD measurement cube (shape = R x C x W) + """ + + print("--- Generating SD measurement cube ---- ") + + measurement_sd = interpolate_data_on_grid_positions(filtered_scene, + X_input, + Y_input, + X_target, + Y_target, + grid_type=grid_type, + interp_method=interp_method) + return measurement_sd
+ +
+[docs] +def generate_dd_measurement(scene, filtering_cube,chunk_size): + """ + Generate DD-CASSI type system measurement from a scene and a filtering cube. ref : "Single-shot compressive spectral imaging with a dual-disperser architecture", M.Gehm et al., Optics Express, 2007 + + Args: + scene (numpy.ndarray): observed scene (shape = R x C x W) + filtering_cube (numpy.ndarray): filtering cube of the instrument for a given pattern (shape = R x C x W) + chunk_size (int) : size of the spatial chunks in which the Hadamard product is performed + + Returns: + numpy.ndarray: filtered scene (shape = R x C x W) + """ + + # Initialize an empty array for the result + filtered_scene = np.empty_like(filtering_cube) + + # Calculate total iterations for tqdm + total_iterations = (filtering_cube.shape[0] // chunk_size + 1) * (filtering_cube.shape[1] // chunk_size + 1) + + with tqdm(total=total_iterations) as pbar: + # Perform the multiplication in chunks + for i in range(0, filtering_cube.shape[0], chunk_size): + for j in range(0, filtering_cube.shape[1], chunk_size): + filtered_scene[i:i + chunk_size, j:j + chunk_size, :] = filtering_cube[i:i + chunk_size, + j:j + chunk_size, :] * scene[ + i:i + chunk_size, + j:j + chunk_size, + :] + pbar.update() + + filtered_scene = np.nan_to_num(filtered_scene) + + return filtered_scene
+ + + + + + +
+[docs] +def match_dataset_to_instrument(dataset, filtering_cube): + """ + Match the size of the dataset to the size of the filtering cube. Either by padding or by cropping + + Args: + dataset (numpy.ndarray): dataset + filtering_cube (numpy.ndarray): filtering cube of the instrument + + Returns: + numpy.ndarray: observed scene (shape = R x C x W) + """ + + + + if filtering_cube.shape[0] != dataset.shape[0] or filtering_cube.shape[1] != dataset.shape[1]: + if dataset.shape[0] < filtering_cube.shape[0]: + dataset = np.pad(dataset, ((0, filtering_cube.shape[0] - dataset.shape[0]), (0, 0), (0, 0)), mode="constant") + if dataset.shape[1] < filtering_cube.shape[1]: + dataset = np.pad(dataset, ((0, 0), (0, filtering_cube.shape[1] - dataset.shape[1]), (0, 0)), mode="constant") + scene = dataset[0:filtering_cube.shape[0], 0:filtering_cube.shape[1], :] + print("Filtering cube and scene must have the same lines and columns") + + if len(filtering_cube.shape) == 3: + if filtering_cube.shape[2] != dataset.shape[2]: + scene = dataset[:, :, 0:filtering_cube.shape[2]] + print("Filtering cube and scene must have the same number of wavelengths") + else: + scene = dataset + + return scene
+ + +
+[docs] +def match_dataset_labels_to_instrument(dataset_labels, filtering_cube): + """ + Match the size of the dataset labels to the size of the filtering cube. Either by padding or by cropping + + Args: + dataset_labels (numpy.ndarray): dataset labels (shape = R_dts x C_dts) + filtering_cube (numpy.ndarray): filtering cube of the instrument + + Returns: + numpy.ndarray: scene labels (shape = R x C) + """ + + if filtering_cube.shape[0] != dataset_labels.shape[0] or filtering_cube.shape[1] != dataset_labels.shape[1]: + if dataset_labels.shape[0] < filtering_cube.shape[0]: + dataset_labels = np.pad(dataset_labels, ((0, filtering_cube.shape[0] - dataset_labels.shape[0])), mode="constant") + if dataset_labels.shape[1] < filtering_cube.shape[1]: + dataset_labels = np.pad(dataset_labels, ((0, 0), (0, filtering_cube.shape[1] - dataset_labels.shape[1])), mode="constant") + dataset_labels = dataset_labels[0:filtering_cube.shape[0], 0:filtering_cube.shape[1]] + print("Filtering cube and scene must have the same lines and columns") + + return dataset_labels
+ + +
+[docs] +def crop_center(array, nb_of_pixels_along_x, nb_of_pixels_along_y): + """ + Crop the given array to the given size, centered on the array + + Args: + array (numpy.ndarray): 2D array to be cropped + nb_of_pixels_along_x (int): number of samples to keep along the X axis + nb_of_pixels_along_y (int): number of samples to keep along the Y axis + + Returns: + numpy.ndarray: cropped array + """ + + y_len, x_len = array.shape + + x_start = x_len//2 - nb_of_pixels_along_x//2 + x_end = x_start + nb_of_pixels_along_x + + y_start = y_len//2 - nb_of_pixels_along_y//2 + y_end = y_start + nb_of_pixels_along_y + + if nb_of_pixels_along_x<array.shape[1]: + array = array[:, x_start:x_end] + + if nb_of_pixels_along_y<array.shape[0]: + array = array[y_start:y_end, :] + + return array
+ + + + + +
+[docs] +def interpolate_data_on_grid_positions(data, X_init, Y_init, X_target, Y_target, grid_type="unstructured", interp_method="linear"): + """ + Interpolate data on a single 2D grid defined by X_target and Y_target + + Args: + data (numpy.ndarray): data to interpolate (3D or 2D) + X_init (numpy.ndarray): X coordinates of the initial grid (3D) + Y_init (numpy.ndarray): Y coordinates of the initial grid (3D) + X_target (numpy.ndarray): X coordinates of the target grid (2D) + Y_target (numpy.ndarray): Y coordinates of the target grid (2D) + grid_type (str): type of the target grid (default = "unstructured", other option = "regular") + interp_method (str): interpolation method (default = "linear") + + Returns: + numpy.ndarray: 3D data interpolated on the target grid + """ + + interpolated_data = np.zeros((X_target.shape[0],X_target.shape[1],X_init.shape[2])) + nb_of_grids = X_init.shape[2] + + if grid_type == "unstructured": + worker = worker_unstructured + elif grid_type == "regular": + worker = worker_regulargrid + + if data.ndim == 2: + data = data[:, :, np.newaxis] + data = np.repeat(data, nb_of_grids, axis=2) + + with Pool(mp.cpu_count()) as p: + + tasks = [(X_init[:, :, i], Y_init[:, :, i], data[:, :, i], X_target, Y_target, interp_method) for i in + range(nb_of_grids)] + + for index, zi in tqdm(enumerate(p.imap(worker, tasks)), total=nb_of_grids, + desc='Interpolate 3D data on grid positions'): + interpolated_data[:, :, index] = zi + + interpolated_data = np.nan_to_num(interpolated_data) + + return interpolated_data
+ + + +
+[docs] +def worker_unstructured(args): + """ + Process to parallellize the unstructured griddata interpolation between the propagated grid (mask and the detector grid + + Args: + args (tuple): containing the following elements: X_init_2D, Y_init_2D, data_2D, X_target_2D, Y_target_2D + + Returns: + numpy.ndarray: 2D array of the data interpolated on the target grid + """ + X_init_2D, Y_init_2D, data_2D, X_target_2D, Y_target_2D, interp_method = args + + interpolated_data = griddata((X_init_2D.flatten(), + Y_init_2D.flatten()), + data_2D.flatten(), + (X_target_2D, Y_target_2D), + method=interp_method) + return interpolated_data
+ + +
+[docs] +def worker_regulargrid(args): + """ + Process to parallellize the structured griddata interpolation between the propagated grid (mask and the detector grid + Note : For now it is identical to the unstructured method but it could be faster ... + + Args: + args (tuple): containing the following elements: X_init_2D, Y_init_2D, data_2D, X_target_2D, Y_target_2D + + Returns: + numpy.ndarray: 2D array of the data interpolated on the target grid + """ + X_init_2D, Y_init_2D, data_2D, X_target_2D, Y_target_2D, interp_method = args + + interpolated_data = griddata((X_init_2D.flatten(), + Y_init_2D.flatten()), + data_2D.flatten(), + (X_target_2D, Y_target_2D), + method=interp_method) + return interpolated_data
+ + + + + + + + +
+ +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/simca/functions_general_purpose.html b/_modules/simca/functions_general_purpose.html new file mode 100644 index 0000000..60500be --- /dev/null +++ b/_modules/simca/functions_general_purpose.html @@ -0,0 +1,246 @@ + + + + + + simca.functions_general_purpose — simca 1.0 documentation + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for simca.functions_general_purpose

+import yaml
+import math
+import os
+import numpy as np
+from datetime import datetime
+import h5py
+
+
+
+[docs] +def load_yaml_config(file_path): + """ + Load a YAML configuration file as a dictionary + + Args: + file_path (str): path to the YAML configuration file + + Returns: + dict: configuration dictionary + """ + with open(file_path, "r") as file: + config = yaml.safe_load(file) + return config
+ + + +
+[docs] +def initialize_acquisitions_directory(config): + """ + Initialize the directory where the results of the acquisition will be stored + + Args: + config (dict): a configuration dictionary containing storing information + + Returns: + str: path to the directory where the results will be stored + """ + timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") + result_directory = os.path.join(config["results directory"], config["acquisition name"], timestamp) + os.makedirs(result_directory, exist_ok=True) + return result_directory
+ + +
+[docs] +def save_data_in_hdf5(file_name, data,result_directory): + """ + Save a dataset in a HDF5 file + + Args: + file_name (str): name of the file + data (any type): data to save + result_directory (str): path to the directory where the results will be stored + + """ + + with h5py.File(result_directory + f'/{file_name}.h5', 'w') as f: + f.create_dataset(f'{file_name}', data=data) + print(f"'{file_name}' dataset saved in '{file_name}' file, stored in {result_directory} directory")
+ + +
+[docs] +def save_config_file(config_file_name,config_file,result_directory): + """ + Save a configuration file in a YAML file + + Args: + config_file_name (str): name of the file + config_file (dict): configuration file to save + result_directory (str): path to the directory where the results will be stored + + """ + with open(result_directory + f"/{config_file_name}.yml", 'w') as file: + yaml.safe_dump(config_file, file)
+ + +
+[docs] +def rotation_z(theta): + """ + Rotate 3D matrix around the Z axis + + Args: + theta (float): Input angle (in rad) + + Returns: + numpy.ndarray : 2D rotation matrix + + """ + + r = np.array(((np.cos(theta), -np.sin(theta), 0), + (np.sin(theta), np.cos(theta), 0), + (0, 0, 1))) + + return r
+ + + +
+[docs] +def rotation_y(theta): + """ + Rotate 3D matrix around the Y axis + + Args: + theta (float): Input angle (in rad) + + Returns: + numpy.ndarray : 2D rotation matrix + + """ + + r = np.array(((np.cos(theta), 0, np.sin(theta)), + (0, 1, 0), + (-np.sin(theta), 0, np.cos(theta)))) + + return r
+ + + +
+[docs] +def rotation_x(theta): + """ + Rotate 3D matrix around the X axis + + Args: + theta (float): Input angle (in rad) + + Returns: + numpy.ndarray : 2D rotation matrix + + """ + + r = np.array(((1, 0, 0), + (0, math.cos(theta), -math.sin(theta)), + (0, math.sin(theta), math.cos(theta)))) + + return r
+ +
+ +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/simca/functions_patterns_generation.html b/_modules/simca/functions_patterns_generation.html new file mode 100644 index 0000000..93509a5 --- /dev/null +++ b/_modules/simca/functions_patterns_generation.html @@ -0,0 +1,481 @@ + + + + + + simca.functions_patterns_generation — simca 1.0 documentation + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for simca.functions_patterns_generation

+import numpy as np
+from scipy import fftpack
+from scipy import ndimage
+import h5py
+
+[docs] +def generate_blue_noise_type_1_pattern(shape): + """ + Generate blue noise (high frequency pseudo-random) type pattern + + Args: + shape (tuple of int): shape of the pattern + + Returns: + numpy.ndarray: binary blue noise type pattern + + """ + + N = shape[0] * shape[1] + rng = np.random.default_rng() + noise = rng.standard_normal(N) + noise = np.reshape(noise, shape) + + f_x = fftpack.fftfreq(shape[1]) + f_y = fftpack.fftfreq(shape[0]) + f_x_shift = fftpack.fftshift(f_x) + f_y_shift = fftpack.fftshift(f_y) + f_matrix = np.sqrt(f_x_shift[None, :] ** 2 + f_y_shift[:, None] ** 2) + + spectrum = fftpack.fftshift(fftpack.fft2(noise)) + filtered_spectrum = spectrum * f_matrix + filtered_noise = fftpack.ifft2(fftpack.ifftshift(filtered_spectrum)).real + + # Make the pattern binary + threshold = np.median(filtered_noise) + binary_pattern = np.where(filtered_noise > threshold, 1, 0) + + return binary_pattern
+ + +
+[docs] +def generate_orthogonal_pattern(size, W, N): + """ + Generate an orthogonal pattern according to https://hal.laas.fr/hal-02993037 + + Args: + size (list of int): size of the pattern + W (int): number of wavelengths in the scene + N (int): number of acquisitions + + Returns: + numpy.ndarray: orthogonal pattern : shape = size[0] x (size[1]+W-1) x N): + """ + + C, R = size[0], size[1] # Number of columns, number of rows + + K = C + W - 1 # Number of columns in H + M = int(np.ceil(W/N)) # Number of open mirrors + H_model = np.zeros((R, W, N)) # Periodic model + for line in range(R): + available_pos = list(range(W)) # Positions of possible mirrors to open + for n in range(N): + if available_pos: + if (len(available_pos)>=M): + ind = np.random.choice(len(available_pos), M, replace=False) # Indices of the N positions among the available ones + pos = np.array(available_pos)[ind] # N mirrors to open + else: + ind = list(range(len(available_pos))) + pos = np.array(available_pos) + H_model[line, pos, n] = 1 # Open the mirrors + for i in sorted(ind, reverse=True): + available_pos.pop(i) # Remove the positions of already opened mirrors + + pattern = np.tile(H_model, [1, int(np.ceil(K/W)), 1])[:, :K, :] # Repeat the model periodically + + return pattern
+ + +
+[docs] +def generate_ln_orthogonal_pattern(size, W, N): + """ + Generate a Length-N orthogonal pattern according to https://hal.laas.fr/hal-02993037 + + Args: + size (tuple): size of the pattern + W (int): number of wavelengths in the scene + N (int): number of acquisitions + + Returns: + numpy.ndarray : length-N orthogonal pattern of shape = size[0] x (size[1]+W-1) x N): + """ + + C, R = size[1], size[0] # Number of columns, number of rows + + K = C + W - 1 # Number of columns in H + M = int(np.floor(W/N)) # Number of open mirrors + H_model = np.zeros((R, W, N)) # Periodic model + for line in range(R): + for m in range(M): + available = list(range(m*N, m*N+N)) # Positions of possible mirrors to open + for n in range(N): + ind = np.random.randint(len(available)) # Randomly choose a mirror among the possible ones + H_model[line, available[ind], n] = 1 # Open the mirror + available.pop(ind) # Remove the mirror from the list of possible ones + available = list(range(M*N, W)) # List of positions where we can't apply the Length-N method (if W%N != 0) + for n in range(W-(M*N)): + ind = np.random.randint(len(available)) # Randomly open those mirrors among the remaining positions + H_model[line, available[ind], n] = 1 + available.pop(ind) + pattern = np.tile(H_model, [1, int(np.ceil(K/W)), 1])[:, :K, :] + + list_of_patterns = [] + for i in range(pattern.shape[2]): + m = pattern[:, :-(W-1), i] + list_of_patterns.append(m) + + return list_of_patterns
+ + +
+[docs] +def generate_random_pattern(shape, ROM): + """ + Generate a random pattern with a given rate of open/close mirrors + + Args: + shape (tuple of int): shape of the pattern + ROM (float): ratio of open mirrors + + Returns: + numpy.ndarray: random pattern + """ + + pattern = np.random.choice([0, 1], size=shape, p=[1 - ROM, ROM]) + + return pattern
+ + +
+[docs] +def generate_slit_pattern(shape, slit_position,slit_width): + """ + Generate a slit pattern that starts at the center of the image and goes to the right as slit position increases. + + Args: + shape (tuple): shape of the pattern + slit_position (int): position of the slit in relation to the central column + slit_width (int): width of the slit in pixels + + Returns: + numpy.ndarray: slit pattern + + """ + size_y, size_x = shape[0], shape[1] + slit_position = size_x // 2 + slit_position + slit_width = slit_width + pattern = np.zeros((size_y,size_x)) + + pattern[:, slit_position - slit_width // 2:slit_position + slit_width] = 1 + + return pattern
+ + +# Source of blue noise codes: https://momentsingraphics.de/BlueNoise.html +
+[docs] +def FindLargestVoid(BinaryPattern,StandardDeviation): + """This function returns the indices of the largest void in the given binary + pattern as defined by Ulichney. + \param BinaryPattern A boolean array (should be two-dimensional although the + implementation works in arbitrary dimensions). + \param StandardDeviation The standard deviation used for the Gaussian filter + in pixels. This can be a single float for an isotropic Gaussian or a + tuple with one float per dimension for an anisotropic Gaussian. + \return A flat index i such that BinaryPattern.flat[i] corresponds to the + largest void. By definition this is a majority pixel. + \sa GetVoidAndClusterBlueNoise""" + # The minority value is always True for convenience + if(np.count_nonzero(BinaryPattern)*2>=np.size(BinaryPattern)): + BinaryPattern=np.logical_not(BinaryPattern) + # Apply the Gaussian. We do not want to cut off the Gaussian at all because even + # the tiniest difference can change the ranking. Therefore we apply the Gaussian + # through a fast Fourier transform by means of the convolution theorem. + FilteredArray=np.fft.ifftn(ndimage.fourier_gaussian(np.fft.fftn(np.where(BinaryPattern,1.0,0.0)),StandardDeviation)).real + # Find the largest void + return np.argmin(np.where(BinaryPattern,2.0,FilteredArray))
+ + +# Source of blue noise codes: https://momentsingraphics.de/BlueNoise.html +
+[docs] +def FindTightestCluster(BinaryPattern,StandardDeviation): + """Like FindLargestVoid() but finds the tightest cluster which is a minority + pixel by definition. + \sa GetVoidAndClusterBlueNoise""" + if(np.count_nonzero(BinaryPattern)*2>=np.size(BinaryPattern)): + BinaryPattern=np.logical_not(BinaryPattern) + FilteredArray=np.fft.ifftn(ndimage.fourier_gaussian(np.fft.fftn(np.where(BinaryPattern,1.0,0.0)),StandardDeviation)).real + return np.argmax(np.where(BinaryPattern,FilteredArray,-1.0))
+ + +# Source of blue noise codes: https://momentsingraphics.de/BlueNoise.html +
+[docs] +def GetVoidAndClusterBlueNoise(OutputShape,StandardDeviation=1.5,InitialSeedFraction=0.1): + """Generates a blue noise dither array of the given shape using the method + proposed by Ulichney [1993] in "The void-and-cluster method for dither array + generation" published in Proc. SPIE 1913. + \param OutputShape The shape of the output array. This function works in + arbitrary dimension, i.e. OutputShape can have arbitrary length. Though + it is only tested for the 2D case where you should pass a tuple + (Height,Width). + \param StandardDeviation The standard deviation in pixels used for the + Gaussian filter defining largest voids and tightest clusters. Larger + values lead to more low-frequency content but better isotropy. Small + values lead to more ordered patterns with less low-frequency content. + Ulichney proposes to use a value of 1.5. If you want an anisotropic + Gaussian, you can pass a tuple of length len(OutputShape) with one + standard deviation per dimension. + \param InitialSeedFraction The only non-deterministic step in the algorithm + marks a small number of pixels in the grid randomly. This parameter + defines the fraction of such points. It has to be positive but less + than 0.5. Very small values lead to ordered patterns, beyond that there + is little change. + \return An integer array of shape OutputShape containing each integer from 0 + to np.prod(OutputShape)-1 exactly once.""" + nRank=np.prod(OutputShape) + # Generate the initial binary pattern with a prescribed number of ones + nInitialOne=max(1,min(int((nRank-1)/2),int(nRank*InitialSeedFraction))) + # Start from white noise (this is the only randomized step) + InitialBinaryPattern=np.zeros(OutputShape,dtype=bool) + InitialBinaryPattern.flat=np.random.permutation(np.arange(nRank))<nInitialOne + # Swap ones from tightest clusters to largest voids iteratively until convergence + while(True): + iTightestCluster=FindTightestCluster(InitialBinaryPattern,StandardDeviation) + InitialBinaryPattern.flat[iTightestCluster]=False + iLargestVoid=FindLargestVoid(InitialBinaryPattern,StandardDeviation) + if(iLargestVoid==iTightestCluster): + InitialBinaryPattern.flat[iTightestCluster]=True + # Nothing has changed, so we have converged + break + else: + InitialBinaryPattern.flat[iLargestVoid]=True + # Rank all pixels + DitherArray=np.zeros(OutputShape,dtype=int) + # Phase 1: Rank minority pixels in the initial binary pattern + BinaryPattern=np.copy(InitialBinaryPattern) + for Rank in range(nInitialOne-1,-1,-1): + iTightestCluster=FindTightestCluster(BinaryPattern,StandardDeviation) + BinaryPattern.flat[iTightestCluster]=False + DitherArray.flat[iTightestCluster]=Rank + # Phase 2: Rank the remainder of the first half of all pixels + BinaryPattern=InitialBinaryPattern + for Rank in range(nInitialOne,int((nRank+1)/2)): + iLargestVoid=FindLargestVoid(BinaryPattern,StandardDeviation) + BinaryPattern.flat[iLargestVoid]=True + DitherArray.flat[iLargestVoid]=Rank + # Phase 3: Rank the last half of pixels + for Rank in range(int((nRank+1)/2),nRank): + iTightestCluster=FindTightestCluster(BinaryPattern,StandardDeviation) + BinaryPattern.flat[iTightestCluster]=True + DitherArray.flat[iTightestCluster]=Rank + return DitherArray
+ + +
+[docs] +def generate_blue_noise_type_2_pattern(shape, std=1.5, initial_seed_fraction=0.1): + """ + Generate blue noise pattern according to the void-and-cluster method proposed by Ulichney [1993] in "The void-and-cluster method for dither array generation" published in Proc. SPIE 1913. + + Args: + shape (tuple): size of the pattern + std (float): standard deviation in pixels used for the Gaussian filter + initial_seed_fraction (float): Initial fraction of marked pixels in the grid. Has to be less than 0.5. + Very small values lead to ordered patterns + Returns: + numpy.ndarray: float blue noise pattern + """ + texture=GetVoidAndClusterBlueNoise(shape,std, initial_seed_fraction) + pattern = (texture/np.max(texture)) # Float value between 0 and 1 + + return pattern
+ + +
+[docs] +def load_custom_pattern(shape,pattern_path): + """ + Load custom pattern from h5 file. If the pattern is not the same size as the coded aperture, crop from the center of the loaded pattern. + + Args: + shape (tuple): size of the pattern + pattern_path (str): path to the h5 file containing the pattern + + Returns: + numpy.ndarray: float blue noise pattern + + """ + size_y, size_x = shape[0], shape[1] + + if pattern_path is None: + raise ValueError("Please provide h5 file path for custom pattern.") + else: + with h5py.File(pattern_path, 'r') as f: + pattern = f['pattern'][:] + + coded_aperture_sampling_y = size_y + coded_aperture_sampling_x = size_x + + if pattern.shape[0] != coded_aperture_sampling_y or pattern.shape[1] != coded_aperture_sampling_x: + # Find center point of the pattern + center_y, center_x = pattern.shape[0] // 2, pattern.shape[1] // 2 + + # Determine starting and ending indices for the crop + start_y = center_y - coded_aperture_sampling_y // 2 + end_y = start_y + coded_aperture_sampling_y + start_x = center_x - coded_aperture_sampling_x // 2 + end_x = start_x + coded_aperture_sampling_x + + # Crop the pattern + pattern = pattern[start_y:end_y, start_x:end_x] + + # Confirm the pattern is the correct shape + if pattern.shape[0] != coded_aperture_sampling_y or pattern.shape[1] != coded_aperture_sampling_x: + raise ValueError("Error cropping the pattern, its shape does not match the coded aperture sampling.") + return pattern
+ +
+[docs] +def load_custom_list_of_patterns(shape,patterns_path): + """ + Load custom list of patterns from h5 file. If the patterns are not the same size as the coded aperture, crop from the center of the loaded patterns. + + Args: + shape (tuple): size of the pattern + patterns_path (str): path to the h5 file containing the patterns + + Returns: + list: list of patterns + """ + + + list_of_coded_aperture_masks = [] + size_y, size_x = shape[0], shape[1] + + if patterns_path is None: + raise ValueError("Please provide h5 file path for custom mask.") + else: + with h5py.File(patterns_path, 'r') as f: + list_of_masks = f['list_of_masks'][:] + + for mask in list_of_masks: + + + if mask.shape[0] != size_y or mask.shape[1] != size_x: + # Find center point of the mask + center_y, center_x = mask.shape[0] // 2, mask.shape[1] // 2 + + # Determine starting and ending indices for the crop + start_y = center_y - size_y // 2 + end_y = start_y + size_y + start_x = center_x - size_x // 2 + end_x = start_x + size_x + + # Crop the mask + mask = mask[start_y:end_y, start_x:end_x] + + # Confirm the mask is the correct shape + if mask.shape[0] != size_y or mask.shape[1] != size_x: + raise ValueError("Error cropping the mask, its shape does not match the coded aperture sampling.") + list_of_coded_aperture_masks.append(mask) + + return list_of_coded_aperture_masks
+ +
+ +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/simca/functions_scenes.html b/_modules/simca/functions_scenes.html new file mode 100644 index 0000000..217dd3c --- /dev/null +++ b/_modules/simca/functions_scenes.html @@ -0,0 +1,257 @@ + + + + + + simca.functions_scenes — simca 1.0 documentation + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for simca.functions_scenes

+import numpy as np
+import seaborn as sns
+import h5py
+from sklearn.decomposition import PCA
+
+
+[docs] +def get_dataset(dataset_name, folder="./datasets/"): + """Gets the dataset specified by name and return the related components. + Args: + dataset_name (str): the name of the dataset + folder (str): folder where the datasets are stored, defaults to "./datasets/" + Returns: + numpy.ndarray: 3D hyperspectral image (WxHxB) + numpy.ndarray: 2D array of labels (integers) + list: list of class names + ignored_labels: list of int classes to ignore + """ + + folder = folder + dataset_name + "/" + h5_file = h5py.File(folder + dataset_name + ".h5", "r") + + scene = np.array(h5_file["scene"],dtype=np.float32) + + # For matlab generated h5 + wavelengths_vec = np.array(h5_file["wavelengths"])[0] + # for python generated h5 + if wavelengths_vec.shape[0] == 1: + wavelengths_vec = np.array(h5_file["wavelengths"]) + + # No NaN accepted + nan_mask = np.isnan(scene.sum(axis=-1)) + scene[nan_mask] = 0 + + try: + labels = np.array(h5_file["labels"], dtype=np.int8) + label_names = [l[0] for l in h5_file['label_names'].asstr()[...]] + + try : + ignored_labels = list(h5_file['ignored_labels'][...][0]) + except: + ignored_labels = list(h5_file['ignored_labels'][...]) + + + labels[nan_mask] = 0 + + + except: + labels = None + label_names = None + ignored_labels = None + + + + return scene, wavelengths_vec, labels, label_names, ignored_labels
+ + + +
+[docs] +def palette_init(label_values): + """Creates a palette for the classes + """ + palette = {0: (0, 0, 0)} + if label_values is None: + return None + else: + for k, color in enumerate(sns.color_palette("hls", len(label_values) - 1)): + palette[k + 1] = tuple(np.asarray(255 * np.array(color), dtype="uint8")) + return palette
+ + +from scipy.interpolate import interpn + +
+[docs] +def explore_spectrums(img, complete_gt, class_names, + ignored_labels=None): + """Plot sampled spectrums with mean + std for each class. + + Args: + img: 3D hyperspectral image + complete_gt: 2D array of labels + class_names: list of class names + ignored_labels (optional): list of labels to ignore + Returns: + mean_spectrums: dict of mean spectrum by class + + """ + + stats_per_class = {"mean_spectrums": {}, 'std_spectrums': {}, 'non_degenerate_mean_spectrums': {}, + 'non_degenerate_covariance': {}} + n_samples_per_class = np.array([np.sum([complete_gt == i]) for i in np.unique(complete_gt) if i not in ignored_labels]) + + """if delta_lambda is not None: + n_dim_pca = int(np.min([0.25 * img.shape[-1] * np.log10(delta_lambda), 0.75 * np.min(n_samples_per_class)])) + else: + n_dim_pca = int(np.min([0.25*img.shape[-1], 0.75*np.min(n_samples_per_class)]))""" + # n_dim_pca = int(np.min([0. * img.shape[-1], 0.5 * np.min(n_samples_per_class)])) + n_dim_pca = 5 + mask = complete_gt > 0 + pca = PCA(n_dim_pca) + pca.fit(img[mask]) + + for c in np.unique(complete_gt): + if c in ignored_labels: + continue + mask = complete_gt == c + class_spectrums = img[mask] + # pca = PCA(n_dim_pca) + class_spectrums_pca = pca.transform(class_spectrums) + + mean_spectrum = np.mean(class_spectrums, axis=0) + std_spectrum = np.std(class_spectrums, axis=0) + + stats_per_class['mean_spectrums'][class_names[c]] = mean_spectrum + stats_per_class['std_spectrums'][class_names[c]] = std_spectrum + stats_per_class['non_degenerate_mean_spectrums'][class_names[c]] = np.mean(class_spectrums_pca, axis=0) + stats_per_class['non_degenerate_covariance'][class_names[c]] = np.cov(np.transpose(class_spectrums_pca)) + + return stats_per_class
+ + + + +
+[docs] +def interpolate_data_along_wavelength(data, current_sampling, new_sampling, chunk_size=50): + """Interpolate the input 3D data along a new sampling in the third axis. + + Args: + data (numpy.ndarray): 3D data to interpolate + current_sampling (numpy.ndarray): current sampling for the 3rd axis + new_sampling (numpy.ndarray): new sampling for the 3rd axis + chunk_size (int): size of the chunks to use for the interpolation + """ + + # Generate the coordinates for the original grid + x = np.arange(data.shape[0]) + y = np.arange(data.shape[1]) + z = current_sampling + + # Initialize an empty array for the result + interpolated_data = np.empty((data.shape[0], data.shape[1], len(new_sampling))) + + # Perform the interpolation in chunks + for i in range(0, data.shape[0], chunk_size): + for j in range(0, data.shape[1], chunk_size): + new_coordinates = np.meshgrid(x[i:i+chunk_size], y[j:j+chunk_size], new_sampling, indexing='ij') + interpolated_data[i:i+chunk_size, j:j+chunk_size, :] = interpn((x[i:i+chunk_size], y[j:j+chunk_size], z), data[i:i+chunk_size, j:j+chunk_size, :], tuple(new_coordinates)) + + return interpolated_data
+ +
+ +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_sources/Tutorial_advanced.rst.txt b/_sources/Tutorial_advanced.rst.txt new file mode 100644 index 0000000..cb35a51 --- /dev/null +++ b/_sources/Tutorial_advanced.rst.txt @@ -0,0 +1,228 @@ +Tutorial - Advanced (only script) +================================= + + + + +Single acquisition +------------------ + + +This tutorial walks you through the process of running a simple acquisition using the `CassiSystem` class from the :code:`simca` package. + +Setup +..... + +First, make sure to import the necessary modules: + +.. code-block:: python + + from simca import CassiSystem, load_yaml_config + +Next, load the configuration files: + +.. code-block:: python + + config_dataset = load_yaml_config("simca/configs/dataset.yml") + config_system = load_yaml_config("simca/configs/cassi_system.yml") + config_patterns = load_yaml_config("simca/configs/pattern.yml") + config_acquisition = load_yaml_config("simca/configs/acquisition.yml") + +Then, set the name of the dataset of interest: + +.. code-block:: python + + dataset_name = "indian_pines" + +Initialize the CassiSystem +.............................. + +Initialize the `CassiSystem`: + +.. code-block:: python + + cassi_system = CassiSystem(system_config=config_system) + +Load the Hyperspectral dataset +.............................. + +Load the hyperspectral dataset: + +.. code-block:: python + + cassi_system.load_dataset(dataset_name, config_dataset["datasets directory"]) + +Generate the Coded Aperture Pattern +........................................ + +Generate the coded aperture pattern: + +.. code-block:: python + + cassi_system.generate_2D_pattern(config_patterns) + +Propagate the Coded Aperture Grid +................................... + +Propagate the coded aperture grid to the detector plane: + +.. code-block:: python + + cassi_system.propagate_coded_aperture_grid() + +Generate the Filtering Cube +.............................. + +Generate the filtering cube: + +.. code-block:: python + + cassi_system.generate_filtering_cube() + +(Optional) Generate the PSF +.............................. + +Generate the PSF of the optical system: + +.. code-block:: python + + cassi_system.optical_model.generate_psf(type="Gaussian",radius=100) + +Simulate the Acquisition +......................... + +Simulate the acquisition (with PSF in this case): + +.. code-block:: python + + cassi_system.image_acquisition(use_psf=True, chunck_size=50) + +Save the Acquisition +......................... + +Finally, save the acquisition: + +.. code-block:: python + + cassi_system.save_acquisition(config_patterns, config_acquisition) + +And that's it! You've successfully run an acquisition using the `CassiSystem` class from the :code:`simca` package. + + +Multiple acquisitions +---------------------- + +This tutorial walks you through the process of running multiple acquisitions using the `CassiSystem` class from the :code:`simca` package. + +Setup +......................... + +First, make sure to import the necessary modules and configurations: + + +.. code-block:: python + + import matplotlib.pyplot as plt + from simca import CassiSystem + from simca.functions_general_purpose import * + import os + + config_dataset = load_yaml_config("simca/configs/dataset.yml") + config_system = load_yaml_config("simca/configs/cassi_system.yml") + config_patterns = load_yaml_config("simca/configs/pattern.yml") + config_acquisition = load_yaml_config("simca/configs/acquisition.yml") + + dataset_name = "indian_pines" + results_directory = "./data/results/lego_test_1" + nb_of_acq = 10 + + +Initialize the CassiSystem +.................................................. + +Initialize the `CassiSystem`: + + +.. code-block:: python + + cassi_system = CassiSystem(system_config=config_system) + + +Load the Hyperspectral dataset +.................................................. + +Load the hyperspectral dataset: + + +.. code-block:: python + + cassi_system.load_dataset(dataset_name, config_dataset["datasets directory"]) + + +Generate Multiple Patterns for Acquisition +........................................................................... + +Generate multiple coded aperture patterns: + + +.. code-block:: python + + cassi_system.generate_multiple_patterns(config_patterns, nb_of_acq) + + +Propagate the Coded Aperture Grid +.................................................. + +Propagate the coded aperture grid to the detector plane: + + +.. code-block:: python + + cassi_system.propagate_coded_aperture_grid() + + +Generate Multiple Filtering Cubes +.................................................. + +Generate the multiple filtering cubes: + + +.. code-block:: python + + cassi_system.generate_multiple_filtering_cubes(nb_of_acq) + + +Simulate Multiple Acquisitions +.................................................. + +Simulate multiple acquisitions: + + +.. code-block:: python + + cassi_system.multiple_image_acquisitions(use_psf=False, nb_of_filtering_cubes=nb_of_acq, chunck_size=50) + + +Save the Acquisition +......................... + +Set up the results directory and save the acquisition: + + +.. code-block:: python + + cassi_system.result_directory = results_directory + os.makedirs(results_directory, exist_ok=True) + + save_config_file("config_system", cassi_system.system_config, cassi_system.result_directory) + save_config_file("config_pattern", config_patterns, cassi_system.result_directory) + save_config_file("config_acquisition", config_acquisition, cassi_system.result_directory) + save_data_in_hdf5("interpolated_scene", cassi_system.interpolated_scene, cassi_system.result_directory) + save_data_in_hdf5("panchro", cassi_system.panchro, cassi_system.result_directory) + save_data_in_hdf5("wavelengths", cassi_system.optical_model.system_wavelengths, cassi_system.result_directory) + save_data_in_hdf5("list_of_compressed_measurements", cassi_system.list_of_measurements, cassi_system.result_directory) + save_data_in_hdf5("list_of_filtering_cubes", cassi_system.list_of_filtering_cubes, cassi_system.result_directory) + save_data_in_hdf5("list_of_patterns", cassi_system.list_of_patterns, cassi_system.result_directory) + +Congratulations! You've successfully performed and saved multiple acquisitions using the `CassiSystem` class from the :code:`simca` package. + diff --git a/_sources/Tutorial_with_GUI.rst.txt b/_sources/Tutorial_with_GUI.rst.txt new file mode 100644 index 0000000..cddec06 --- /dev/null +++ b/_sources/Tutorial_with_GUI.rst.txt @@ -0,0 +1,279 @@ +Tutorial - Basics (with GUI) +============================ + + + +Discover Main Features +----------------------- + +The are 4 main features included in the application. These modules are not completely independent, using them sequentially is recommended for first usages. + +- **Dataset Analysis** (only with GUI): for analyzing multi- or hyper-spectral datasets. It includes vizualization of data slices, spectrum analysis, and dataset labeling. + +- **Optical Design**: for evaluating and comparing the performances of various optical systems. + +- **Coded Aperture**: for generating various patterns and corresponding filtering cubes. + +- **Acquisition**: for simulating the acquisition process of coded images + +.. image:: /resources/layout_general.svg + :alt: Docusaurus logo + +Feature A : Dataset Analysis +---------------------------- + +The Dataset analysis tab is used to **load & display datasets characteristics**. + +.. image:: /resources/layout_dataset_tab.svg + :alt: layout dataset tab + +1. Settings +............. + +Located on the left side of the application window. + +Includes: + +- `datasets directory` : path to the datasets directory. All datasets be stored here. + **ATTENTION** : click on the `reload datasets` button if you change the datasets directory path + +- **dataset name : a ComboBox displaying the datasets available in the selected directory** + +- `loaded dataset dimensions` : These values are displayed once the dataset is loaded + - `dimension along X` : dimension of the dataset in the X direction (main spectral dispersion direction) + - `dimension along Y` : dimension of the dataset in the Y direction (perpendicular to spectral dispersion direction) + - `number of spectral bands` : number of spectral bands in the loaded dataset + - `minimum wavelength` : minimum wavelength, usually corresponds to the spectral band n°0 + - `maximum wavelength` : maximum wavelength, usually corresponds to the last spectral band + +2. Load dataset button +....................... + +By clicking on this button, the dataset selected in the `dataset name` ComboBox is loaded by the application. + +3. Display windows +.................... + +Located on the right side of the application window. + +**Once a dataset is loaded**, one can inspect the spatial and spectral content of the dataset. + +Hyperspectral cube +^^^^^^^^^^^^^^^^^^ + +By moving the slider, you choose the spectral plane to be displayed. + +.. image:: /resources/layout_dataset_2.svg + :alt: dataset layout 2 + +Compare Spectra +^^^^^^^^^^^^^^^ + +.. image:: /resources/layout_dataset_3.svg + :alt: dataset layout 2 + +Labelisation map +^^^^^^^^^^^^^^^^ + +.. image:: /resources/layout_dataset_4.svg + :alt: dataset layout 2 + +Labelisation Histogram +^^^^^^^^^^^^^^^^^^^^^^ + +.. image:: /resources/layout_dataset_5.svg + :alt: dataset layout 2 + + +Feature B : Optical Design +-------------------------- + +The Optical Design tab is used for quick evaluation of the optical system characteristics (spectral dispersion & distortions). + +.. image:: /resources/layout_optical_design_tab.svg + :alt: layout dataset tab + +1. System Settings +................... + +.. image:: /resources/mask_to_detector.svg + :alt: Docusaurus logo + +Located on the left side of the application window. + +Includes: + +- **infos**: + - *system name*: name of the studied system +- **system architecture**: All parameters that define the optical system and thus the spatial/spectral filtering + + - *system type* + - *propagation type* : model used for evaluating the spatial/spectral filtering + - *focal lens F* [in micrometers] + - *dispersive element*: + - *type*: Prism or Grating + - *A (only when prism is selected)*: apex angle of the prism [in degrees] + - *m (only when grating is selected)*: considered order of diffraction [no units] + - *G (only when grating is selected)*: grating lines density [lines/mm] + - *delta alpha c* [in degrees] + - *delta beta c* [in degrees] + - *wavelength center* [in nm] +- **detector**: parameters that define the detector grid +- **SLM**: parameters that define the mask grid +- **spectral range**: the spectral boundaries of the system and the number of spectral bands to consider + +2. Run Simulation button +......................... + +For each considered wavelength, the mask grid points coordinates is propagated onto the detector. + +3. Display +........... + +Located on the right side of the application window. It can be used to analyse the mask grid object and its images in the detector plane. + +Coded aperture grid +^^^^^^^^^^^^^^^^^^^^ + +.. image:: /resources/input_grid.svg + :alt: Docusaurus logo + +Propagated coded aperture grid +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +Spectral images of the input coded aperture grid for the minimum, maximum, and center wavelength. + +**ATTENTION**: center wavelength (605 nm on the given example) is different from the system architecture center wavelength + +.. image:: /resources/propagated_grids.svg + :alt: Docusaurus logo + +Distortion maps +^^^^^^^^^^^^^^^ + +Get qualitative and quantitative distortion data: + +.. image:: /resources/distortion_maps.svg + :alt: Docusaurus logo + + +Feature C : Pattern generation +------------------------------- + +The Coded Aperture tab is used for designing patterns and generating associated filtering cube. + +.. image:: /resources/layout_coded_aperture.svg + :alt: Coded Aperture design tab + + + +1. Patterns Settings +..................... + +Located on the left side of the application window. + +The patterns characteristics depend on the chosen pattern type. + +Available patterns: + +- **slit**:*only one column of the coded aperture is open (perpendicular to the spectral dispersion), thus generating a spectral gradient type filter.* + - *slit position*: relative to the center column between -100 and 100 coded aperture elements + - *slit width*: between 1 and 30 coded aperture elements. +- **random**: random noise pattern with a normal law +- **blue noise**: random noise pattern with boosted high frequencies +- **custon h5 pattern**: custom pattern that should be a h5 file with a container named "pattern". Once loaded, the pattern is cropped to fit SLM dimensions + +2. Generate pattern +.................... + +By clicking on this button, a 2D array representing a coded aperture pattern is generated through pattern generation functions contained in the `functions_patterns_generation.py` file. + + +3. Generate Filtering Cube button +.................................. + + +By clicking on this button, a `CassiSystem` instance is creating the filtering cube corresponding to the **detector dimensions along X and Y** and the **number of spectral bands**. + +Each slice of the filtering contains the projection of the coded aperture pattern on the detector grid. + +**ATTENTION** : The spectral sampling of the filtering cube is not the same as the dataset's sampling. It is defined in the spectral range section of the Optical Design tab. The wavelengths are equally spaced between "minimum wavelength" and "maximum wavelength". + +4. Display Pattern and Filtering Cube +...................................... + +Located on the right side of the application window. + +Pattern +^^^^^^^ + +Shows the generated (or loaded) pattern: + +.. image:: /resources/pattern_display.svg + :alt: Pattern + +Filtering Cube, slice by slice +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +Shows the corresponding filtering cube. By moving the slider, one can inspect the filtering cube slice by slice: + +.. image:: /resources/filtering-cube.svg + :alt: filtering cube + +Feature D : Acquisition +------------------------ + +The Acquisition tab is used to generate compressed measurements given: a **dataset** and a **filtering cube**. + +Note that the dataset is: + +- cropped in the spatial dimensions to fit the filtering cube sampling (detector dimensions). +- interpolated in the spectral dimension according to the filtering cube sampling. + + + +.. image:: /resources/acquisition_tab.svg + :alt: layout scene tab + +1. Settings +............ + +For now, the GUI only includes one mode: single acquisition. + +A Point-spread-function (PSF) can be added for more realism. For now, each slice of the filtered scene is convolved by the same kernel. A wavelength-dependent PSF will be added in the future. + +2. Run Acquisition button +.......................... + +By clicking on this button: + +- First, the dataset cube is cropped in the spatial dimensions and interpolated in the spectral dimension. +- Second, a point by point multiplication is performed between the filtering cube and the reinterpolated scene. + +3. Display measurements +........................ + +compressed measurements +^^^^^^^^^^^^^^^^^^^^^^^^ + +The image as measured by the detector. + +.. image:: /resources/layout_acquisition_1.svg + :alt: layout scene tab + +Spectral images +^^^^^^^^^^^^^^^ + +Each slice of the filtered scene. + +.. image:: /resources/layout_acquisition_2.svg + :alt: layout scene tab + +Panchromatic image +^^^^^^^^^^^^^^^^^^ + +No spatial/spectral filtering, the interpolated scene is simply summed along its spectral dimension. + +.. image:: /resources/layout_acquisition_3.svg + :alt: layout scene tab + diff --git a/_sources/getting_started.rst.txt b/_sources/getting_started.rst.txt new file mode 100644 index 0000000..55f7cc3 --- /dev/null +++ b/_sources/getting_started.rst.txt @@ -0,0 +1,65 @@ +.. _getting_started: + +Getting started +=============== + + + +Installation +------------ + +To install :code:`simca`, follow the steps below: + +1. Clone the repository from GitLab: + +.. code-block:: bash + + git clone git@gitlab.laas.fr:arouxel/simca.git + cd simca + +2. Create a dedicated Python environment using Miniconda. If you don't have Miniconda installed, you can find the instructions `here `_. + +.. code-block:: bash + + # Create a new Python environment + conda create -n simca-env python=3.9 + + # Activate the environment + conda activate simca-env + +3. Install the necessary Python packages that simca relies on. These are listed in the `requirements.txt` file in the repository. + +.. code-block:: bash + + # Install necessary Python packages with pip + pip install -r requirements.txt + + +Usage +----- + +Download datasets +^^^^^^^^^^^^^^^^^^ + +4. Download the standard datasets from this `link `_, then unzip and paste the `datasets` folder in the root directory of SIMCA. + +Quick Start with GUI (option 1) +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +5. Start the application: + +.. code-block:: bash + + # run the app + python main.py + +Quick Start with API (option 2) +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +5. Run the example script : + +.. code-block:: bash + + # run the script + python simple_script.py + diff --git a/_sources/index.rst.txt b/_sources/index.rst.txt new file mode 100644 index 0000000..40bc8e7 --- /dev/null +++ b/_sources/index.rst.txt @@ -0,0 +1,85 @@ +.. simca documentation master file, created by + sphinx-quickstart on Fri Aug 4 17:05:16 2023. + You can adapt this file completely to your liking, but it should at least + contain the root `toctree` directive. + +SIMCA : optical simulations for coded spectral imaging +======================================================= + + +.. image:: ./resources/SIMCA_logo-2-cropped.png + +SIMCA is a python-based tool designed to perform optical simulations of Coded Aperture Snapshot Spectral Imaging (CASSI) systems. +We provide a python package and a graphical user-interface developed in PyQt5. + +It is built upon ray-tracing equations and interpolation methods to estimate the image formation process and generate realistic measurements of various cassi instruments. + +Available **system architectures** are: + +- Single-Disperser CASSI (:cite:`Wagadarikar2008`) +- Double-Disperser CASSI (:cite:`Gehm2007`) + +Available **propagation models** are: + +- Higher-Order from :cite:`Arguello2013` +- Ray-tracing (first implementation in :cite:`Hemsley2020a`, another paper will be submitted soon) + +Available **optical components** and related characteristics are: + +- Lens (params: focal length) +- Prism (params: apex angle, glass type, orientation misalignments) +- Grating (params: groove density, orientation misalignments) + +More system architectures and optical components will be added in the future. + + +Main Features +============= + +SIMCA includes four main features: + +- **Scene Analysis** (only with GUI): for analyzing multi- or hyper-spectral datasets. It includes vizualization of data slices, spectrum analysis, and dataset labeling. + +- **Optical Design**: for evaluating and comparing the performances of various optical systems. + +- **Coded Aperture patterns Generation**: for generating various patterns and corresponding filtering cubes. + +- **Acquisition Coded Images**: for simulating the acquisition process + +For more detailed information about each feature and further instructions, please visit our `Tutorial - Basics (with GUI) `_ and `Tutorial - Advanced (only script) `_. + + +.. toctree:: + :maxdepth: 2 + :caption: Contents: + + getting_started + Tutorial_with_GUI + Tutorial_advanced + simca + + + + +Indices and tables +================== + +* :ref:`genindex` +* :ref:`modindex` +* :ref:`search` + + +License +======= + +SIMCA is licensed under the `GNU General Public License `_. + + +Contact +======= + +For any questions or feedback, please contact us at arouxel@laas.fr + +References +========== +.. bibliography:: ./resources/biblio.bib diff --git a/_sources/modules.rst.txt b/_sources/modules.rst.txt new file mode 100644 index 0000000..4ca8528 --- /dev/null +++ b/_sources/modules.rst.txt @@ -0,0 +1,7 @@ +cassi_systems +============= + +.. toctree:: + :maxdepth: 4 + + cassi_systems diff --git a/_sources/simca.rst.txt b/_sources/simca.rst.txt new file mode 100644 index 0000000..e6929c4 --- /dev/null +++ b/_sources/simca.rst.txt @@ -0,0 +1,48 @@ +API Reference +============= + +.. toctree:: + :maxdepth: 4 + +The :code:`simca` package is based on the work :cite:`rouxelphdthesis` + + + +classes +------- + +.. automodule:: simca.CassiSystem + :members: + :undoc-members: + :show-inheritance: + +.. automodule:: simca.OpticalModel + :members: + :undoc-members: + :show-inheritance: + +functions +---------- + + .. automodule:: simca.functions_scenes + :members: + :undoc-members: + :show-inheritance: + + +.. automodule:: simca.functions_patterns_generation + :members: + :undoc-members: + :show-inheritance: + + +.. automodule:: simca.functions_acquisition + :members: + :undoc-members: + :show-inheritance: + + +.. automodule:: simca.functions_general_purpose + :members: + :undoc-members: + :show-inheritance: diff --git a/_static/_sphinx_javascript_frameworks_compat.js b/_static/_sphinx_javascript_frameworks_compat.js new file mode 100644 index 0000000..8141580 --- /dev/null +++ b/_static/_sphinx_javascript_frameworks_compat.js @@ -0,0 +1,123 @@ +/* Compatability shim for jQuery and underscores.js. + * + * Copyright Sphinx contributors + * Released under the two clause BSD licence + */ + +/** + * small helper function to urldecode strings + * + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL + */ +jQuery.urldecode = function(x) { + if (!x) { + return x + } + return decodeURIComponent(x.replace(/\+/g, ' ')); +}; + +/** + * small helper function to urlencode strings + */ +jQuery.urlencode = encodeURIComponent; + +/** + * This function returns the parsed url parameters of the + * current request. Multiple values per key are supported, + * it will always return arrays of strings for the value parts. + */ +jQuery.getQueryParameters = function(s) { + if (typeof s === 'undefined') + s = document.location.search; + var parts = s.substr(s.indexOf('?') + 1).split('&'); + var result = {}; + for (var i = 0; i < parts.length; i++) { + var tmp = parts[i].split('=', 2); + var key = jQuery.urldecode(tmp[0]); + var value = jQuery.urldecode(tmp[1]); + if (key in result) + result[key].push(value); + else + result[key] = [value]; + } + return result; +}; + +/** + * highlight a given string on a jquery object by wrapping it in + * span elements with the given class name. + */ +jQuery.fn.highlightText = function(text, className) { + function highlight(node, addItems) { + if (node.nodeType === 3) { + var val = node.nodeValue; + var pos = val.toLowerCase().indexOf(text); + if (pos >= 0 && + !jQuery(node.parentNode).hasClass(className) && + !jQuery(node.parentNode).hasClass("nohighlight")) { + var span; + var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.className = className; + } + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + node.parentNode.insertBefore(span, node.parentNode.insertBefore( + document.createTextNode(val.substr(pos + text.length)), + node.nextSibling)); + node.nodeValue = val.substr(0, pos); + if (isInSVG) { + var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect"); + var bbox = node.parentElement.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute('class', className); + addItems.push({ + "parent": node.parentNode, + "target": rect}); + } + } + } + else if (!jQuery(node).is("button, select, textarea")) { + jQuery.each(node.childNodes, function() { + highlight(this, addItems); + }); + } + } + var addItems = []; + var result = this.each(function() { + highlight(this, addItems); + }); + for (var i = 0; i < addItems.length; ++i) { + jQuery(addItems[i].parent).before(addItems[i].target); + } + return result; +}; + +/* + * backward compatibility for jQuery.browser + * This will be supported until firefox bug is fixed. + */ +if (!jQuery.browser) { + jQuery.uaMatch = function(ua) { + ua = ua.toLowerCase(); + + var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || + /(webkit)[ \/]([\w.]+)/.exec(ua) || + /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || + /(msie) ([\w.]+)/.exec(ua) || + ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || + []; + + return { + browser: match[ 1 ] || "", + version: match[ 2 ] || "0" + }; + }; + jQuery.browser = {}; + jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; +} diff --git a/_static/basic.css b/_static/basic.css new file mode 100644 index 0000000..30fee9d --- /dev/null +++ b/_static/basic.css @@ -0,0 +1,925 @@ +/* + * basic.css + * ~~~~~~~~~ + * + * Sphinx stylesheet -- basic theme. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +/* -- main layout ----------------------------------------------------------- */ + +div.clearer { + clear: both; +} + +div.section::after { + display: block; + content: ''; + clear: left; +} + +/* -- relbar ---------------------------------------------------------------- */ + +div.related { + width: 100%; + font-size: 90%; +} + +div.related h3 { + display: none; +} + +div.related ul { + margin: 0; + padding: 0 0 0 10px; + list-style: none; +} + +div.related li { + display: inline; +} + +div.related li.right { + float: right; + margin-right: 5px; +} + +/* -- sidebar --------------------------------------------------------------- */ + +div.sphinxsidebarwrapper { + padding: 10px 5px 0 10px; +} + +div.sphinxsidebar { + float: left; + width: 230px; + margin-left: -100%; + font-size: 90%; + word-wrap: break-word; + overflow-wrap : break-word; +} + +div.sphinxsidebar ul { + list-style: none; +} + +div.sphinxsidebar ul ul, +div.sphinxsidebar ul.want-points { + margin-left: 20px; + list-style: square; +} + +div.sphinxsidebar ul ul { + margin-top: 0; + margin-bottom: 0; +} + +div.sphinxsidebar form { + margin-top: 10px; +} + +div.sphinxsidebar input { + border: 1px solid #98dbcc; + font-family: sans-serif; + font-size: 1em; +} + +div.sphinxsidebar #searchbox form.search { + overflow: hidden; +} + +div.sphinxsidebar #searchbox input[type="text"] { + float: left; + width: 80%; + padding: 0.25em; + box-sizing: border-box; +} + +div.sphinxsidebar #searchbox input[type="submit"] { + float: left; + width: 20%; + border-left: none; + padding: 0.25em; + box-sizing: border-box; +} + + +img { + border: 0; + max-width: 100%; +} + +/* -- search page ----------------------------------------------------------- */ + +ul.search { + margin: 10px 0 0 20px; + padding: 0; +} + +ul.search li { + padding: 5px 0 5px 20px; + background-image: url(file.png); + background-repeat: no-repeat; + background-position: 0 7px; +} + +ul.search li a { + font-weight: bold; +} + +ul.search li p.context { + color: #888; + margin: 2px 0 0 30px; + text-align: left; +} + +ul.keywordmatches li.goodmatch a { + font-weight: bold; +} + +/* -- index page ------------------------------------------------------------ */ + +table.contentstable { + width: 90%; + margin-left: auto; + margin-right: auto; +} + +table.contentstable p.biglink { + line-height: 150%; +} + +a.biglink { + font-size: 1.3em; +} + +span.linkdescr { + font-style: italic; + padding-top: 5px; + font-size: 90%; +} + +/* -- general index --------------------------------------------------------- */ + +table.indextable { + width: 100%; +} + +table.indextable td { + text-align: left; + vertical-align: top; +} + +table.indextable ul { + margin-top: 0; + margin-bottom: 0; + list-style-type: none; +} + +table.indextable > tbody > tr > td > ul { + padding-left: 0em; +} + +table.indextable tr.pcap { + height: 10px; +} + +table.indextable tr.cap { + margin-top: 10px; + background-color: #f2f2f2; +} + +img.toggler { + margin-right: 3px; + margin-top: 3px; + cursor: pointer; +} + +div.modindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +div.genindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +/* -- domain module index --------------------------------------------------- */ + +table.modindextable td { + padding: 2px; + border-collapse: collapse; +} + +/* -- general body styles --------------------------------------------------- */ + +div.body { + min-width: 360px; + max-width: 800px; +} + +div.body p, div.body dd, div.body li, div.body blockquote { + -moz-hyphens: auto; + -ms-hyphens: auto; + -webkit-hyphens: auto; + hyphens: auto; +} + +a.headerlink { + visibility: hidden; +} + +a:visited { + color: #551A8B; +} + +h1:hover > a.headerlink, +h2:hover > a.headerlink, +h3:hover > a.headerlink, +h4:hover > a.headerlink, +h5:hover > a.headerlink, +h6:hover > a.headerlink, +dt:hover > a.headerlink, +caption:hover > a.headerlink, +p.caption:hover > a.headerlink, +div.code-block-caption:hover > a.headerlink { + visibility: visible; +} + +div.body p.caption { + text-align: inherit; +} + +div.body td { + text-align: left; +} + +.first { + margin-top: 0 !important; +} + +p.rubric { + margin-top: 30px; + font-weight: bold; +} + +img.align-left, figure.align-left, .figure.align-left, object.align-left { + clear: left; + float: left; + margin-right: 1em; +} + +img.align-right, figure.align-right, .figure.align-right, object.align-right { + clear: right; + float: right; + margin-left: 1em; +} + +img.align-center, figure.align-center, .figure.align-center, object.align-center { + display: block; + margin-left: auto; + margin-right: auto; +} + +img.align-default, figure.align-default, .figure.align-default { + display: block; + margin-left: auto; + margin-right: auto; +} + +.align-left { + text-align: left; +} + +.align-center { + text-align: center; +} + +.align-default { + text-align: center; +} + +.align-right { + text-align: right; +} + +/* -- sidebars -------------------------------------------------------------- */ + +div.sidebar, +aside.sidebar { + margin: 0 0 0.5em 1em; + border: 1px solid #ddb; + padding: 7px; + background-color: #ffe; + width: 40%; + float: right; + clear: right; + overflow-x: auto; +} + +p.sidebar-title { + font-weight: bold; +} + +nav.contents, +aside.topic, +div.admonition, div.topic, blockquote { + clear: left; +} + +/* -- topics ---------------------------------------------------------------- */ + +nav.contents, +aside.topic, +div.topic { + border: 1px solid #ccc; + padding: 7px; + margin: 10px 0 10px 0; +} + +p.topic-title { + font-size: 1.1em; + font-weight: bold; + margin-top: 10px; +} + +/* -- admonitions ----------------------------------------------------------- */ + +div.admonition { + margin-top: 10px; + margin-bottom: 10px; + padding: 7px; +} + +div.admonition dt { + font-weight: bold; +} + +p.admonition-title { + margin: 0px 10px 5px 0px; + font-weight: bold; +} + +div.body p.centered { + text-align: center; + margin-top: 25px; +} + +/* -- content of sidebars/topics/admonitions -------------------------------- */ + +div.sidebar > :last-child, +aside.sidebar > :last-child, +nav.contents > :last-child, +aside.topic > :last-child, +div.topic > :last-child, +div.admonition > :last-child { + margin-bottom: 0; +} + +div.sidebar::after, +aside.sidebar::after, +nav.contents::after, +aside.topic::after, +div.topic::after, +div.admonition::after, +blockquote::after { + display: block; + content: ''; + clear: both; +} + +/* -- tables ---------------------------------------------------------------- */ + +table.docutils { + margin-top: 10px; + margin-bottom: 10px; + border: 0; + border-collapse: collapse; +} + +table.align-center { + margin-left: auto; + margin-right: auto; +} + +table.align-default { + margin-left: auto; + margin-right: auto; +} + +table caption span.caption-number { + font-style: italic; +} + +table caption span.caption-text { +} + +table.docutils td, table.docutils th { + padding: 1px 8px 1px 5px; + border-top: 0; + border-left: 0; + border-right: 0; + border-bottom: 1px solid #aaa; +} + +th { + text-align: left; + padding-right: 5px; +} + +table.citation { + border-left: solid 1px gray; + margin-left: 1px; +} + +table.citation td { + border-bottom: none; +} + +th > :first-child, +td > :first-child { + margin-top: 0px; +} + +th > :last-child, +td > :last-child { + margin-bottom: 0px; +} + +/* -- figures --------------------------------------------------------------- */ + +div.figure, figure { + margin: 0.5em; + padding: 0.5em; +} + +div.figure p.caption, figcaption { + padding: 0.3em; +} + +div.figure p.caption span.caption-number, +figcaption span.caption-number { + font-style: italic; +} + +div.figure p.caption span.caption-text, +figcaption span.caption-text { +} + +/* -- field list styles ----------------------------------------------------- */ + +table.field-list td, table.field-list th { + border: 0 !important; +} + +.field-list ul { + margin: 0; + padding-left: 1em; +} + +.field-list p { + margin: 0; +} + +.field-name { + -moz-hyphens: manual; + -ms-hyphens: manual; + -webkit-hyphens: manual; + hyphens: manual; +} + +/* -- hlist styles ---------------------------------------------------------- */ + +table.hlist { + margin: 1em 0; +} + +table.hlist td { + vertical-align: top; +} + +/* -- object description styles --------------------------------------------- */ + +.sig { + font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; +} + +.sig-name, code.descname { + background-color: transparent; + font-weight: bold; +} + +.sig-name { + font-size: 1.1em; +} + +code.descname { + font-size: 1.2em; +} + +.sig-prename, code.descclassname { + background-color: transparent; +} + +.optional { + font-size: 1.3em; +} + +.sig-paren { + font-size: larger; +} + +.sig-param.n { + font-style: italic; +} + +/* C++ specific styling */ + +.sig-inline.c-texpr, +.sig-inline.cpp-texpr { + font-family: unset; +} + +.sig.c .k, .sig.c .kt, +.sig.cpp .k, .sig.cpp .kt { + color: #0033B3; +} + +.sig.c .m, +.sig.cpp .m { + color: #1750EB; +} + +.sig.c .s, .sig.c .sc, +.sig.cpp .s, .sig.cpp .sc { + color: #067D17; +} + + +/* -- other body styles ----------------------------------------------------- */ + +ol.arabic { + list-style: decimal; +} + +ol.loweralpha { + list-style: lower-alpha; +} + +ol.upperalpha { + list-style: upper-alpha; +} + +ol.lowerroman { + list-style: lower-roman; +} + +ol.upperroman { + list-style: upper-roman; +} + +:not(li) > ol > li:first-child > :first-child, +:not(li) > ul > li:first-child > :first-child { + margin-top: 0px; +} + +:not(li) > ol > li:last-child > :last-child, +:not(li) > ul > li:last-child > :last-child { + margin-bottom: 0px; +} + +ol.simple ol p, +ol.simple ul p, +ul.simple ol p, +ul.simple ul p { + margin-top: 0; +} + +ol.simple > li:not(:first-child) > p, +ul.simple > li:not(:first-child) > p { + margin-top: 0; +} + +ol.simple p, +ul.simple p { + margin-bottom: 0; +} + +aside.footnote > span, +div.citation > span { + float: left; +} +aside.footnote > span:last-of-type, +div.citation > span:last-of-type { + padding-right: 0.5em; +} +aside.footnote > p { + margin-left: 2em; +} +div.citation > p { + margin-left: 4em; +} +aside.footnote > p:last-of-type, +div.citation > p:last-of-type { + margin-bottom: 0em; +} +aside.footnote > p:last-of-type:after, +div.citation > p:last-of-type:after { + content: ""; + clear: both; +} + +dl.field-list { + display: grid; + grid-template-columns: fit-content(30%) auto; +} + +dl.field-list > dt { + font-weight: bold; + word-break: break-word; + padding-left: 0.5em; + padding-right: 5px; +} + +dl.field-list > dd { + padding-left: 0.5em; + margin-top: 0em; + margin-left: 0em; + margin-bottom: 0em; +} + +dl { + margin-bottom: 15px; +} + +dd > :first-child { + margin-top: 0px; +} + +dd ul, dd table { + margin-bottom: 10px; +} + +dd { + margin-top: 3px; + margin-bottom: 10px; + margin-left: 30px; +} + +.sig dd { + margin-top: 0px; + margin-bottom: 0px; +} + +.sig dl { + margin-top: 0px; + margin-bottom: 0px; +} + +dl > dd:last-child, +dl > dd:last-child > :last-child { + margin-bottom: 0; +} + +dt:target, span.highlighted { + background-color: #fbe54e; +} + +rect.highlighted { + fill: #fbe54e; +} + +dl.glossary dt { + font-weight: bold; + font-size: 1.1em; +} + +.versionmodified { + font-style: italic; +} + +.system-message { + background-color: #fda; + padding: 5px; + border: 3px solid red; +} + +.footnote:target { + background-color: #ffa; +} + +.line-block { + display: block; + margin-top: 1em; + margin-bottom: 1em; +} + +.line-block .line-block { + margin-top: 0; + margin-bottom: 0; + margin-left: 1.5em; +} + +.guilabel, .menuselection { + font-family: sans-serif; +} + +.accelerator { + text-decoration: underline; +} + +.classifier { + font-style: oblique; +} + +.classifier:before { + font-style: normal; + margin: 0 0.5em; + content: ":"; + display: inline-block; +} + +abbr, acronym { + border-bottom: dotted 1px; + cursor: help; +} + +.translated { + background-color: rgba(207, 255, 207, 0.2) +} + +.untranslated { + background-color: rgba(255, 207, 207, 0.2) +} + +/* -- code displays --------------------------------------------------------- */ + +pre { + overflow: auto; + overflow-y: hidden; /* fixes display issues on Chrome browsers */ +} + +pre, div[class*="highlight-"] { + clear: both; +} + +span.pre { + -moz-hyphens: none; + -ms-hyphens: none; + -webkit-hyphens: none; + hyphens: none; + white-space: nowrap; +} + +div[class*="highlight-"] { + margin: 1em 0; +} + +td.linenos pre { + border: 0; + background-color: transparent; + color: #aaa; +} + +table.highlighttable { + display: block; +} + +table.highlighttable tbody { + display: block; +} + +table.highlighttable tr { + display: flex; +} + +table.highlighttable td { + margin: 0; + padding: 0; +} + +table.highlighttable td.linenos { + padding-right: 0.5em; +} + +table.highlighttable td.code { + flex: 1; + overflow: hidden; +} + +.highlight .hll { + display: block; +} + +div.highlight pre, +table.highlighttable pre { + margin: 0; +} + +div.code-block-caption + div { + margin-top: 0; +} + +div.code-block-caption { + margin-top: 1em; + padding: 2px 5px; + font-size: small; +} + +div.code-block-caption code { + background-color: transparent; +} + +table.highlighttable td.linenos, +span.linenos, +div.highlight span.gp { /* gp: Generic.Prompt */ + user-select: none; + -webkit-user-select: text; /* Safari fallback only */ + -webkit-user-select: none; /* Chrome/Safari */ + -moz-user-select: none; /* Firefox */ + -ms-user-select: none; /* IE10+ */ +} + +div.code-block-caption span.caption-number { + padding: 0.1em 0.3em; + font-style: italic; +} + +div.code-block-caption span.caption-text { +} + +div.literal-block-wrapper { + margin: 1em 0; +} + +code.xref, a code { + background-color: transparent; + font-weight: bold; +} + +h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { + background-color: transparent; +} + +.viewcode-link { + float: right; +} + +.viewcode-back { + float: right; + font-family: sans-serif; +} + +div.viewcode-block:target { + margin: -1px -10px; + padding: 0 10px; +} + +/* -- math display ---------------------------------------------------------- */ + +img.math { + vertical-align: middle; +} + +div.body div.math p { + text-align: center; +} + +span.eqno { + float: right; +} + +span.eqno a.headerlink { + position: absolute; + z-index: 1; +} + +div.math:hover a.headerlink { + visibility: visible; +} + +/* -- printout stylesheet --------------------------------------------------- */ + +@media print { + div.document, + div.documentwrapper, + div.bodywrapper { + margin: 0 !important; + width: 100%; + } + + div.sphinxsidebar, + div.related, + div.footer, + #top-link { + display: none; + } +} \ No newline at end of file diff --git a/_static/css/badge_only.css b/_static/css/badge_only.css new file mode 100644 index 0000000..c718cee --- /dev/null +++ b/_static/css/badge_only.css @@ -0,0 +1 @@ +.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}@font-face{font-family:FontAwesome;font-style:normal;font-weight:400;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#FontAwesome) format("svg")}.fa:before{font-family:FontAwesome;font-style:normal;font-weight:400;line-height:1}.fa:before,a .fa{text-decoration:inherit}.fa:before,a .fa,li .fa{display:inline-block}li .fa-large:before{width:1.875em}ul.fas{list-style-type:none;margin-left:2em;text-indent:-.8em}ul.fas li .fa{width:.8em}ul.fas li .fa-large:before{vertical-align:baseline}.fa-book:before,.icon-book:before{content:"\f02d"}.fa-caret-down:before,.icon-caret-down:before{content:"\f0d7"}.fa-caret-up:before,.icon-caret-up:before{content:"\f0d8"}.fa-caret-left:before,.icon-caret-left:before{content:"\f0d9"}.fa-caret-right:before,.icon-caret-right:before{content:"\f0da"}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60}.rst-versions .rst-current-version:after{clear:both;content:"";display:block}.rst-versions .rst-current-version .fa{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}} \ No newline at end of file diff --git a/_static/css/fonts/Roboto-Slab-Bold.woff b/_static/css/fonts/Roboto-Slab-Bold.woff new file mode 100644 index 0000000..6cb6000 Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Bold.woff differ diff --git a/_static/css/fonts/Roboto-Slab-Bold.woff2 b/_static/css/fonts/Roboto-Slab-Bold.woff2 new file mode 100644 index 0000000..7059e23 Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Bold.woff2 differ diff --git a/_static/css/fonts/Roboto-Slab-Regular.woff b/_static/css/fonts/Roboto-Slab-Regular.woff new file mode 100644 index 0000000..f815f63 Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Regular.woff differ diff --git a/_static/css/fonts/Roboto-Slab-Regular.woff2 b/_static/css/fonts/Roboto-Slab-Regular.woff2 new file mode 100644 index 0000000..f2c76e5 Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Regular.woff2 differ diff --git a/_static/css/fonts/fontawesome-webfont.eot b/_static/css/fonts/fontawesome-webfont.eot new file mode 100644 index 0000000..e9f60ca Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.eot differ diff --git a/_static/css/fonts/fontawesome-webfont.svg b/_static/css/fonts/fontawesome-webfont.svg new file mode 100644 index 0000000..855c845 --- /dev/null +++ b/_static/css/fonts/fontawesome-webfont.svg @@ -0,0 +1,2671 @@ + + + + +Created by FontForge 20120731 at Mon Oct 24 17:37:40 2016 + By ,,, +Copyright Dave Gandy 2016. All rights reserved. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_static/css/fonts/fontawesome-webfont.ttf b/_static/css/fonts/fontawesome-webfont.ttf new file mode 100644 index 0000000..35acda2 Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.ttf differ diff --git a/_static/css/fonts/fontawesome-webfont.woff b/_static/css/fonts/fontawesome-webfont.woff new file mode 100644 index 0000000..400014a Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.woff differ diff --git a/_static/css/fonts/fontawesome-webfont.woff2 b/_static/css/fonts/fontawesome-webfont.woff2 new file mode 100644 index 0000000..4d13fc6 Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.woff2 differ diff --git a/_static/css/fonts/lato-bold-italic.woff b/_static/css/fonts/lato-bold-italic.woff new file mode 100644 index 0000000..88ad05b Binary files /dev/null and b/_static/css/fonts/lato-bold-italic.woff differ diff --git a/_static/css/fonts/lato-bold-italic.woff2 b/_static/css/fonts/lato-bold-italic.woff2 new file mode 100644 index 0000000..c4e3d80 Binary files /dev/null and b/_static/css/fonts/lato-bold-italic.woff2 differ diff --git a/_static/css/fonts/lato-bold.woff b/_static/css/fonts/lato-bold.woff new file mode 100644 index 0000000..c6dff51 Binary files /dev/null and b/_static/css/fonts/lato-bold.woff differ diff --git a/_static/css/fonts/lato-bold.woff2 b/_static/css/fonts/lato-bold.woff2 new file mode 100644 index 0000000..bb19504 Binary files /dev/null and b/_static/css/fonts/lato-bold.woff2 differ diff --git a/_static/css/fonts/lato-normal-italic.woff b/_static/css/fonts/lato-normal-italic.woff new file mode 100644 index 0000000..76114bc Binary files /dev/null and b/_static/css/fonts/lato-normal-italic.woff differ diff --git a/_static/css/fonts/lato-normal-italic.woff2 b/_static/css/fonts/lato-normal-italic.woff2 new file mode 100644 index 0000000..3404f37 Binary files /dev/null and b/_static/css/fonts/lato-normal-italic.woff2 differ diff --git a/_static/css/fonts/lato-normal.woff b/_static/css/fonts/lato-normal.woff new file mode 100644 index 0000000..ae1307f Binary files /dev/null and b/_static/css/fonts/lato-normal.woff differ diff --git a/_static/css/fonts/lato-normal.woff2 b/_static/css/fonts/lato-normal.woff2 new file mode 100644 index 0000000..3bf9843 Binary files /dev/null and b/_static/css/fonts/lato-normal.woff2 differ diff --git a/_static/css/theme.css b/_static/css/theme.css new file mode 100644 index 0000000..19a446a --- /dev/null +++ b/_static/css/theme.css @@ -0,0 +1,4 @@ +html{box-sizing:border-box}*,:after,:before{box-sizing:inherit}article,aside,details,figcaption,figure,footer,header,hgroup,nav,section{display:block}audio,canvas,video{display:inline-block;*display:inline;*zoom:1}[hidden],audio:not([controls]){display:none}*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:100%;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}a:active,a:hover{outline:0}abbr[title]{border-bottom:1px dotted}b,strong{font-weight:700}blockquote{margin:0}dfn{font-style:italic}ins{background:#ff9;text-decoration:none}ins,mark{color:#000}mark{background:#ff0;font-style:italic;font-weight:700}.rst-content code,.rst-content tt,code,kbd,pre,samp{font-family:monospace,serif;_font-family:courier new,monospace;font-size:1em}pre{white-space:pre}q{quotes:none}q:after,q:before{content:"";content:none}small{font-size:85%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sup{top:-.5em}sub{bottom:-.25em}dl,ol,ul{margin:0;padding:0;list-style:none;list-style-image:none}li{list-style:none}dd{margin:0}img{border:0;-ms-interpolation-mode:bicubic;vertical-align:middle;max-width:100%}svg:not(:root){overflow:hidden}figure,form{margin:0}label{cursor:pointer}button,input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}button,input{line-height:normal}button,input[type=button],input[type=reset],input[type=submit]{cursor:pointer;-webkit-appearance:button;*overflow:visible}button[disabled],input[disabled]{cursor:default}input[type=search]{-webkit-appearance:textfield;-moz-box-sizing:content-box;-webkit-box-sizing:content-box;box-sizing:content-box}textarea{resize:vertical}table{border-collapse:collapse;border-spacing:0}td{vertical-align:top}.chromeframe{margin:.2em 0;background:#ccc;color:#000;padding:.2em 0}.ir{display:block;border:0;text-indent:-999em;overflow:hidden;background-color:transparent;background-repeat:no-repeat;text-align:left;direction:ltr;*line-height:0}.ir br{display:none}.hidden{display:none!important;visibility:hidden}.visuallyhidden{border:0;clip:rect(0 0 0 0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}.visuallyhidden.focusable:active,.visuallyhidden.focusable:focus{clip:auto;height:auto;margin:0;overflow:visible;position:static;width:auto}.invisible{visibility:hidden}.relative{position:relative}big,small{font-size:100%}@media print{body,html,section{background:none!important}*{box-shadow:none!important;text-shadow:none!important;filter:none!important;-ms-filter:none!important}a,a:visited{text-decoration:underline}.ir a:after,a[href^="#"]:after,a[href^="javascript:"]:after{content:""}blockquote,pre{page-break-inside:avoid}thead{display:table-header-group}img,tr{page-break-inside:avoid}img{max-width:100%!important}@page{margin:.5cm}.rst-content .toctree-wrapper>p.caption,h2,h3,p{orphans:3;widows:3}.rst-content .toctree-wrapper>p.caption,h2,h3{page-break-after:avoid}}.btn,.fa:before,.icon:before,.rst-content .admonition,.rst-content .admonition-title:before,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .code-block-caption .headerlink:before,.rst-content .danger,.rst-content .eqno .headerlink:before,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-alert,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before,input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week],select,textarea{-webkit-font-smoothing:antialiased}.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}/*! + * Font Awesome 4.7.0 by @davegandy - http://fontawesome.io - @fontawesome + * License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License) + */@font-face{font-family:FontAwesome;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713);src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix&v=4.7.0) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#fontawesomeregular) format("svg");font-weight:400;font-style:normal}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.fa-lg{font-size:1.33333em;line-height:.75em;vertical-align:-15%}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-fw{width:1.28571em;text-align:center}.fa-ul{padding-left:0;margin-left:2.14286em;list-style-type:none}.fa-ul>li{position:relative}.fa-li{position:absolute;left:-2.14286em;width:2.14286em;top:.14286em;text-align:center}.fa-li.fa-lg{left:-1.85714em}.fa-border{padding:.2em .25em .15em;border:.08em solid #eee;border-radius:.1em}.fa-pull-left{float:left}.fa-pull-right{float:right}.fa-pull-left.icon,.fa.fa-pull-left,.rst-content .code-block-caption .fa-pull-left.headerlink,.rst-content .eqno .fa-pull-left.headerlink,.rst-content .fa-pull-left.admonition-title,.rst-content code.download span.fa-pull-left:first-child,.rst-content dl dt .fa-pull-left.headerlink,.rst-content h1 .fa-pull-left.headerlink,.rst-content h2 .fa-pull-left.headerlink,.rst-content h3 .fa-pull-left.headerlink,.rst-content h4 .fa-pull-left.headerlink,.rst-content h5 .fa-pull-left.headerlink,.rst-content h6 .fa-pull-left.headerlink,.rst-content p .fa-pull-left.headerlink,.rst-content table>caption .fa-pull-left.headerlink,.rst-content tt.download span.fa-pull-left:first-child,.wy-menu-vertical li.current>a button.fa-pull-left.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-left.toctree-expand,.wy-menu-vertical li button.fa-pull-left.toctree-expand{margin-right:.3em}.fa-pull-right.icon,.fa.fa-pull-right,.rst-content .code-block-caption .fa-pull-right.headerlink,.rst-content .eqno .fa-pull-right.headerlink,.rst-content .fa-pull-right.admonition-title,.rst-content code.download span.fa-pull-right:first-child,.rst-content dl dt .fa-pull-right.headerlink,.rst-content h1 .fa-pull-right.headerlink,.rst-content h2 .fa-pull-right.headerlink,.rst-content h3 .fa-pull-right.headerlink,.rst-content h4 .fa-pull-right.headerlink,.rst-content h5 .fa-pull-right.headerlink,.rst-content h6 .fa-pull-right.headerlink,.rst-content p .fa-pull-right.headerlink,.rst-content table>caption .fa-pull-right.headerlink,.rst-content tt.download span.fa-pull-right:first-child,.wy-menu-vertical li.current>a button.fa-pull-right.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-right.toctree-expand,.wy-menu-vertical li button.fa-pull-right.toctree-expand{margin-left:.3em}.pull-right{float:right}.pull-left{float:left}.fa.pull-left,.pull-left.icon,.rst-content .code-block-caption .pull-left.headerlink,.rst-content .eqno .pull-left.headerlink,.rst-content .pull-left.admonition-title,.rst-content code.download span.pull-left:first-child,.rst-content dl dt .pull-left.headerlink,.rst-content h1 .pull-left.headerlink,.rst-content h2 .pull-left.headerlink,.rst-content h3 .pull-left.headerlink,.rst-content h4 .pull-left.headerlink,.rst-content h5 .pull-left.headerlink,.rst-content h6 .pull-left.headerlink,.rst-content p .pull-left.headerlink,.rst-content table>caption .pull-left.headerlink,.rst-content tt.download span.pull-left:first-child,.wy-menu-vertical li.current>a button.pull-left.toctree-expand,.wy-menu-vertical li.on a button.pull-left.toctree-expand,.wy-menu-vertical li button.pull-left.toctree-expand{margin-right:.3em}.fa.pull-right,.pull-right.icon,.rst-content .code-block-caption .pull-right.headerlink,.rst-content .eqno .pull-right.headerlink,.rst-content .pull-right.admonition-title,.rst-content code.download span.pull-right:first-child,.rst-content dl dt .pull-right.headerlink,.rst-content h1 .pull-right.headerlink,.rst-content h2 .pull-right.headerlink,.rst-content h3 .pull-right.headerlink,.rst-content h4 .pull-right.headerlink,.rst-content h5 .pull-right.headerlink,.rst-content h6 .pull-right.headerlink,.rst-content p .pull-right.headerlink,.rst-content table>caption .pull-right.headerlink,.rst-content tt.download span.pull-right:first-child,.wy-menu-vertical li.current>a button.pull-right.toctree-expand,.wy-menu-vertical li.on a button.pull-right.toctree-expand,.wy-menu-vertical li button.pull-right.toctree-expand{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s linear infinite;animation:fa-spin 2s linear infinite}.fa-pulse{-webkit-animation:fa-spin 1s steps(8) infinite;animation:fa-spin 1s steps(8) infinite}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.fa-rotate-90{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";-webkit-transform:scaleX(-1);-ms-transform:scaleX(-1);transform:scaleX(-1)}.fa-flip-vertical{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)";-webkit-transform:scaleY(-1);-ms-transform:scaleY(-1);transform:scaleY(-1)}:root .fa-flip-horizontal,:root .fa-flip-vertical,:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270{filter:none}.fa-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:middle}.fa-stack-1x,.fa-stack-2x{position:absolute;left:0;width:100%;text-align:center}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-glass:before{content:""}.fa-music:before{content:""}.fa-search:before,.icon-search:before{content:""}.fa-envelope-o:before{content:""}.fa-heart:before{content:""}.fa-star:before{content:""}.fa-star-o:before{content:""}.fa-user:before{content:""}.fa-film:before{content:""}.fa-th-large:before{content:""}.fa-th:before{content:""}.fa-th-list:before{content:""}.fa-check:before{content:""}.fa-close:before,.fa-remove:before,.fa-times:before{content:""}.fa-search-plus:before{content:""}.fa-search-minus:before{content:""}.fa-power-off:before{content:""}.fa-signal:before{content:""}.fa-cog:before,.fa-gear:before{content:""}.fa-trash-o:before{content:""}.fa-home:before,.icon-home:before{content:""}.fa-file-o:before{content:""}.fa-clock-o:before{content:""}.fa-road:before{content:""}.fa-download:before,.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{content:""}.fa-arrow-circle-o-down:before{content:""}.fa-arrow-circle-o-up:before{content:""}.fa-inbox:before{content:""}.fa-play-circle-o:before{content:""}.fa-repeat:before,.fa-rotate-right:before{content:""}.fa-refresh:before{content:""}.fa-list-alt:before{content:""}.fa-lock:before{content:""}.fa-flag:before{content:""}.fa-headphones:before{content:""}.fa-volume-off:before{content:""}.fa-volume-down:before{content:""}.fa-volume-up:before{content:""}.fa-qrcode:before{content:""}.fa-barcode:before{content:""}.fa-tag:before{content:""}.fa-tags:before{content:""}.fa-book:before,.icon-book:before{content:""}.fa-bookmark:before{content:""}.fa-print:before{content:""}.fa-camera:before{content:""}.fa-font:before{content:""}.fa-bold:before{content:""}.fa-italic:before{content:""}.fa-text-height:before{content:""}.fa-text-width:before{content:""}.fa-align-left:before{content:""}.fa-align-center:before{content:""}.fa-align-right:before{content:""}.fa-align-justify:before{content:""}.fa-list:before{content:""}.fa-dedent:before,.fa-outdent:before{content:""}.fa-indent:before{content:""}.fa-video-camera:before{content:""}.fa-image:before,.fa-photo:before,.fa-picture-o:before{content:""}.fa-pencil:before{content:""}.fa-map-marker:before{content:""}.fa-adjust:before{content:""}.fa-tint:before{content:""}.fa-edit:before,.fa-pencil-square-o:before{content:""}.fa-share-square-o:before{content:""}.fa-check-square-o:before{content:""}.fa-arrows:before{content:""}.fa-step-backward:before{content:""}.fa-fast-backward:before{content:""}.fa-backward:before{content:""}.fa-play:before{content:""}.fa-pause:before{content:""}.fa-stop:before{content:""}.fa-forward:before{content:""}.fa-fast-forward:before{content:""}.fa-step-forward:before{content:""}.fa-eject:before{content:""}.fa-chevron-left:before{content:""}.fa-chevron-right:before{content:""}.fa-plus-circle:before{content:""}.fa-minus-circle:before{content:""}.fa-times-circle:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before{content:""}.fa-check-circle:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before{content:""}.fa-question-circle:before{content:""}.fa-info-circle:before{content:""}.fa-crosshairs:before{content:""}.fa-times-circle-o:before{content:""}.fa-check-circle-o:before{content:""}.fa-ban:before{content:""}.fa-arrow-left:before{content:""}.fa-arrow-right:before{content:""}.fa-arrow-up:before{content:""}.fa-arrow-down:before{content:""}.fa-mail-forward:before,.fa-share:before{content:""}.fa-expand:before{content:""}.fa-compress:before{content:""}.fa-plus:before{content:""}.fa-minus:before{content:""}.fa-asterisk:before{content:""}.fa-exclamation-circle:before,.rst-content .admonition-title:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before{content:""}.fa-gift:before{content:""}.fa-leaf:before{content:""}.fa-fire:before,.icon-fire:before{content:""}.fa-eye:before{content:""}.fa-eye-slash:before{content:""}.fa-exclamation-triangle:before,.fa-warning:before{content:""}.fa-plane:before{content:""}.fa-calendar:before{content:""}.fa-random:before{content:""}.fa-comment:before{content:""}.fa-magnet:before{content:""}.fa-chevron-up:before{content:""}.fa-chevron-down:before{content:""}.fa-retweet:before{content:""}.fa-shopping-cart:before{content:""}.fa-folder:before{content:""}.fa-folder-open:before{content:""}.fa-arrows-v:before{content:""}.fa-arrows-h:before{content:""}.fa-bar-chart-o:before,.fa-bar-chart:before{content:""}.fa-twitter-square:before{content:""}.fa-facebook-square:before{content:""}.fa-camera-retro:before{content:""}.fa-key:before{content:""}.fa-cogs:before,.fa-gears:before{content:""}.fa-comments:before{content:""}.fa-thumbs-o-up:before{content:""}.fa-thumbs-o-down:before{content:""}.fa-star-half:before{content:""}.fa-heart-o:before{content:""}.fa-sign-out:before{content:""}.fa-linkedin-square:before{content:""}.fa-thumb-tack:before{content:""}.fa-external-link:before{content:""}.fa-sign-in:before{content:""}.fa-trophy:before{content:""}.fa-github-square:before{content:""}.fa-upload:before{content:""}.fa-lemon-o:before{content:""}.fa-phone:before{content:""}.fa-square-o:before{content:""}.fa-bookmark-o:before{content:""}.fa-phone-square:before{content:""}.fa-twitter:before{content:""}.fa-facebook-f:before,.fa-facebook:before{content:""}.fa-github:before,.icon-github:before{content:""}.fa-unlock:before{content:""}.fa-credit-card:before{content:""}.fa-feed:before,.fa-rss:before{content:""}.fa-hdd-o:before{content:""}.fa-bullhorn:before{content:""}.fa-bell:before{content:""}.fa-certificate:before{content:""}.fa-hand-o-right:before{content:""}.fa-hand-o-left:before{content:""}.fa-hand-o-up:before{content:""}.fa-hand-o-down:before{content:""}.fa-arrow-circle-left:before,.icon-circle-arrow-left:before{content:""}.fa-arrow-circle-right:before,.icon-circle-arrow-right:before{content:""}.fa-arrow-circle-up:before{content:""}.fa-arrow-circle-down:before{content:""}.fa-globe:before{content:""}.fa-wrench:before{content:""}.fa-tasks:before{content:""}.fa-filter:before{content:""}.fa-briefcase:before{content:""}.fa-arrows-alt:before{content:""}.fa-group:before,.fa-users:before{content:""}.fa-chain:before,.fa-link:before,.icon-link:before{content:""}.fa-cloud:before{content:""}.fa-flask:before{content:""}.fa-cut:before,.fa-scissors:before{content:""}.fa-copy:before,.fa-files-o:before{content:""}.fa-paperclip:before{content:""}.fa-floppy-o:before,.fa-save:before{content:""}.fa-square:before{content:""}.fa-bars:before,.fa-navicon:before,.fa-reorder:before{content:""}.fa-list-ul:before{content:""}.fa-list-ol:before{content:""}.fa-strikethrough:before{content:""}.fa-underline:before{content:""}.fa-table:before{content:""}.fa-magic:before{content:""}.fa-truck:before{content:""}.fa-pinterest:before{content:""}.fa-pinterest-square:before{content:""}.fa-google-plus-square:before{content:""}.fa-google-plus:before{content:""}.fa-money:before{content:""}.fa-caret-down:before,.icon-caret-down:before,.wy-dropdown .caret:before{content:""}.fa-caret-up:before{content:""}.fa-caret-left:before{content:""}.fa-caret-right:before{content:""}.fa-columns:before{content:""}.fa-sort:before,.fa-unsorted:before{content:""}.fa-sort-desc:before,.fa-sort-down:before{content:""}.fa-sort-asc:before,.fa-sort-up:before{content:""}.fa-envelope:before{content:""}.fa-linkedin:before{content:""}.fa-rotate-left:before,.fa-undo:before{content:""}.fa-gavel:before,.fa-legal:before{content:""}.fa-dashboard:before,.fa-tachometer:before{content:""}.fa-comment-o:before{content:""}.fa-comments-o:before{content:""}.fa-bolt:before,.fa-flash:before{content:""}.fa-sitemap:before{content:""}.fa-umbrella:before{content:""}.fa-clipboard:before,.fa-paste:before{content:""}.fa-lightbulb-o:before{content:""}.fa-exchange:before{content:""}.fa-cloud-download:before{content:""}.fa-cloud-upload:before{content:""}.fa-user-md:before{content:""}.fa-stethoscope:before{content:""}.fa-suitcase:before{content:""}.fa-bell-o:before{content:""}.fa-coffee:before{content:""}.fa-cutlery:before{content:""}.fa-file-text-o:before{content:""}.fa-building-o:before{content:""}.fa-hospital-o:before{content:""}.fa-ambulance:before{content:""}.fa-medkit:before{content:""}.fa-fighter-jet:before{content:""}.fa-beer:before{content:""}.fa-h-square:before{content:""}.fa-plus-square:before{content:""}.fa-angle-double-left:before{content:""}.fa-angle-double-right:before{content:""}.fa-angle-double-up:before{content:""}.fa-angle-double-down:before{content:""}.fa-angle-left:before{content:""}.fa-angle-right:before{content:""}.fa-angle-up:before{content:""}.fa-angle-down:before{content:""}.fa-desktop:before{content:""}.fa-laptop:before{content:""}.fa-tablet:before{content:""}.fa-mobile-phone:before,.fa-mobile:before{content:""}.fa-circle-o:before{content:""}.fa-quote-left:before{content:""}.fa-quote-right:before{content:""}.fa-spinner:before{content:""}.fa-circle:before{content:""}.fa-mail-reply:before,.fa-reply:before{content:""}.fa-github-alt:before{content:""}.fa-folder-o:before{content:""}.fa-folder-open-o:before{content:""}.fa-smile-o:before{content:""}.fa-frown-o:before{content:""}.fa-meh-o:before{content:""}.fa-gamepad:before{content:""}.fa-keyboard-o:before{content:""}.fa-flag-o:before{content:""}.fa-flag-checkered:before{content:""}.fa-terminal:before{content:""}.fa-code:before{content:""}.fa-mail-reply-all:before,.fa-reply-all:before{content:""}.fa-star-half-empty:before,.fa-star-half-full:before,.fa-star-half-o:before{content:""}.fa-location-arrow:before{content:""}.fa-crop:before{content:""}.fa-code-fork:before{content:""}.fa-chain-broken:before,.fa-unlink:before{content:""}.fa-question:before{content:""}.fa-info:before{content:""}.fa-exclamation:before{content:""}.fa-superscript:before{content:""}.fa-subscript:before{content:""}.fa-eraser:before{content:""}.fa-puzzle-piece:before{content:""}.fa-microphone:before{content:""}.fa-microphone-slash:before{content:""}.fa-shield:before{content:""}.fa-calendar-o:before{content:""}.fa-fire-extinguisher:before{content:""}.fa-rocket:before{content:""}.fa-maxcdn:before{content:""}.fa-chevron-circle-left:before{content:""}.fa-chevron-circle-right:before{content:""}.fa-chevron-circle-up:before{content:""}.fa-chevron-circle-down:before{content:""}.fa-html5:before{content:""}.fa-css3:before{content:""}.fa-anchor:before{content:""}.fa-unlock-alt:before{content:""}.fa-bullseye:before{content:""}.fa-ellipsis-h:before{content:""}.fa-ellipsis-v:before{content:""}.fa-rss-square:before{content:""}.fa-play-circle:before{content:""}.fa-ticket:before{content:""}.fa-minus-square:before{content:""}.fa-minus-square-o:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before{content:""}.fa-level-up:before{content:""}.fa-level-down:before{content:""}.fa-check-square:before{content:""}.fa-pencil-square:before{content:""}.fa-external-link-square:before{content:""}.fa-share-square:before{content:""}.fa-compass:before{content:""}.fa-caret-square-o-down:before,.fa-toggle-down:before{content:""}.fa-caret-square-o-up:before,.fa-toggle-up:before{content:""}.fa-caret-square-o-right:before,.fa-toggle-right:before{content:""}.fa-eur:before,.fa-euro:before{content:""}.fa-gbp:before{content:""}.fa-dollar:before,.fa-usd:before{content:""}.fa-inr:before,.fa-rupee:before{content:""}.fa-cny:before,.fa-jpy:before,.fa-rmb:before,.fa-yen:before{content:""}.fa-rouble:before,.fa-rub:before,.fa-ruble:before{content:""}.fa-krw:before,.fa-won:before{content:""}.fa-bitcoin:before,.fa-btc:before{content:""}.fa-file:before{content:""}.fa-file-text:before{content:""}.fa-sort-alpha-asc:before{content:""}.fa-sort-alpha-desc:before{content:""}.fa-sort-amount-asc:before{content:""}.fa-sort-amount-desc:before{content:""}.fa-sort-numeric-asc:before{content:""}.fa-sort-numeric-desc:before{content:""}.fa-thumbs-up:before{content:""}.fa-thumbs-down:before{content:""}.fa-youtube-square:before{content:""}.fa-youtube:before{content:""}.fa-xing:before{content:""}.fa-xing-square:before{content:""}.fa-youtube-play:before{content:""}.fa-dropbox:before{content:""}.fa-stack-overflow:before{content:""}.fa-instagram:before{content:""}.fa-flickr:before{content:""}.fa-adn:before{content:""}.fa-bitbucket:before,.icon-bitbucket:before{content:""}.fa-bitbucket-square:before{content:""}.fa-tumblr:before{content:""}.fa-tumblr-square:before{content:""}.fa-long-arrow-down:before{content:""}.fa-long-arrow-up:before{content:""}.fa-long-arrow-left:before{content:""}.fa-long-arrow-right:before{content:""}.fa-apple:before{content:""}.fa-windows:before{content:""}.fa-android:before{content:""}.fa-linux:before{content:""}.fa-dribbble:before{content:""}.fa-skype:before{content:""}.fa-foursquare:before{content:""}.fa-trello:before{content:""}.fa-female:before{content:""}.fa-male:before{content:""}.fa-gittip:before,.fa-gratipay:before{content:""}.fa-sun-o:before{content:""}.fa-moon-o:before{content:""}.fa-archive:before{content:""}.fa-bug:before{content:""}.fa-vk:before{content:""}.fa-weibo:before{content:""}.fa-renren:before{content:""}.fa-pagelines:before{content:""}.fa-stack-exchange:before{content:""}.fa-arrow-circle-o-right:before{content:""}.fa-arrow-circle-o-left:before{content:""}.fa-caret-square-o-left:before,.fa-toggle-left:before{content:""}.fa-dot-circle-o:before{content:""}.fa-wheelchair:before{content:""}.fa-vimeo-square:before{content:""}.fa-try:before,.fa-turkish-lira:before{content:""}.fa-plus-square-o:before,.wy-menu-vertical li button.toctree-expand:before{content:""}.fa-space-shuttle:before{content:""}.fa-slack:before{content:""}.fa-envelope-square:before{content:""}.fa-wordpress:before{content:""}.fa-openid:before{content:""}.fa-bank:before,.fa-institution:before,.fa-university:before{content:""}.fa-graduation-cap:before,.fa-mortar-board:before{content:""}.fa-yahoo:before{content:""}.fa-google:before{content:""}.fa-reddit:before{content:""}.fa-reddit-square:before{content:""}.fa-stumbleupon-circle:before{content:""}.fa-stumbleupon:before{content:""}.fa-delicious:before{content:""}.fa-digg:before{content:""}.fa-pied-piper-pp:before{content:""}.fa-pied-piper-alt:before{content:""}.fa-drupal:before{content:""}.fa-joomla:before{content:""}.fa-language:before{content:""}.fa-fax:before{content:""}.fa-building:before{content:""}.fa-child:before{content:""}.fa-paw:before{content:""}.fa-spoon:before{content:""}.fa-cube:before{content:""}.fa-cubes:before{content:""}.fa-behance:before{content:""}.fa-behance-square:before{content:""}.fa-steam:before{content:""}.fa-steam-square:before{content:""}.fa-recycle:before{content:""}.fa-automobile:before,.fa-car:before{content:""}.fa-cab:before,.fa-taxi:before{content:""}.fa-tree:before{content:""}.fa-spotify:before{content:""}.fa-deviantart:before{content:""}.fa-soundcloud:before{content:""}.fa-database:before{content:""}.fa-file-pdf-o:before{content:""}.fa-file-word-o:before{content:""}.fa-file-excel-o:before{content:""}.fa-file-powerpoint-o:before{content:""}.fa-file-image-o:before,.fa-file-photo-o:before,.fa-file-picture-o:before{content:""}.fa-file-archive-o:before,.fa-file-zip-o:before{content:""}.fa-file-audio-o:before,.fa-file-sound-o:before{content:""}.fa-file-movie-o:before,.fa-file-video-o:before{content:""}.fa-file-code-o:before{content:""}.fa-vine:before{content:""}.fa-codepen:before{content:""}.fa-jsfiddle:before{content:""}.fa-life-bouy:before,.fa-life-buoy:before,.fa-life-ring:before,.fa-life-saver:before,.fa-support:before{content:""}.fa-circle-o-notch:before{content:""}.fa-ra:before,.fa-rebel:before,.fa-resistance:before{content:""}.fa-empire:before,.fa-ge:before{content:""}.fa-git-square:before{content:""}.fa-git:before{content:""}.fa-hacker-news:before,.fa-y-combinator-square:before,.fa-yc-square:before{content:""}.fa-tencent-weibo:before{content:""}.fa-qq:before{content:""}.fa-wechat:before,.fa-weixin:before{content:""}.fa-paper-plane:before,.fa-send:before{content:""}.fa-paper-plane-o:before,.fa-send-o:before{content:""}.fa-history:before{content:""}.fa-circle-thin:before{content:""}.fa-header:before{content:""}.fa-paragraph:before{content:""}.fa-sliders:before{content:""}.fa-share-alt:before{content:""}.fa-share-alt-square:before{content:""}.fa-bomb:before{content:""}.fa-futbol-o:before,.fa-soccer-ball-o:before{content:""}.fa-tty:before{content:""}.fa-binoculars:before{content:""}.fa-plug:before{content:""}.fa-slideshare:before{content:""}.fa-twitch:before{content:""}.fa-yelp:before{content:""}.fa-newspaper-o:before{content:""}.fa-wifi:before{content:""}.fa-calculator:before{content:""}.fa-paypal:before{content:""}.fa-google-wallet:before{content:""}.fa-cc-visa:before{content:""}.fa-cc-mastercard:before{content:""}.fa-cc-discover:before{content:""}.fa-cc-amex:before{content:""}.fa-cc-paypal:before{content:""}.fa-cc-stripe:before{content:""}.fa-bell-slash:before{content:""}.fa-bell-slash-o:before{content:""}.fa-trash:before{content:""}.fa-copyright:before{content:""}.fa-at:before{content:""}.fa-eyedropper:before{content:""}.fa-paint-brush:before{content:""}.fa-birthday-cake:before{content:""}.fa-area-chart:before{content:""}.fa-pie-chart:before{content:""}.fa-line-chart:before{content:""}.fa-lastfm:before{content:""}.fa-lastfm-square:before{content:""}.fa-toggle-off:before{content:""}.fa-toggle-on:before{content:""}.fa-bicycle:before{content:""}.fa-bus:before{content:""}.fa-ioxhost:before{content:""}.fa-angellist:before{content:""}.fa-cc:before{content:""}.fa-ils:before,.fa-shekel:before,.fa-sheqel:before{content:""}.fa-meanpath:before{content:""}.fa-buysellads:before{content:""}.fa-connectdevelop:before{content:""}.fa-dashcube:before{content:""}.fa-forumbee:before{content:""}.fa-leanpub:before{content:""}.fa-sellsy:before{content:""}.fa-shirtsinbulk:before{content:""}.fa-simplybuilt:before{content:""}.fa-skyatlas:before{content:""}.fa-cart-plus:before{content:""}.fa-cart-arrow-down:before{content:""}.fa-diamond:before{content:""}.fa-ship:before{content:""}.fa-user-secret:before{content:""}.fa-motorcycle:before{content:""}.fa-street-view:before{content:""}.fa-heartbeat:before{content:""}.fa-venus:before{content:""}.fa-mars:before{content:""}.fa-mercury:before{content:""}.fa-intersex:before,.fa-transgender:before{content:""}.fa-transgender-alt:before{content:""}.fa-venus-double:before{content:""}.fa-mars-double:before{content:""}.fa-venus-mars:before{content:""}.fa-mars-stroke:before{content:""}.fa-mars-stroke-v:before{content:""}.fa-mars-stroke-h:before{content:""}.fa-neuter:before{content:""}.fa-genderless:before{content:""}.fa-facebook-official:before{content:""}.fa-pinterest-p:before{content:""}.fa-whatsapp:before{content:""}.fa-server:before{content:""}.fa-user-plus:before{content:""}.fa-user-times:before{content:""}.fa-bed:before,.fa-hotel:before{content:""}.fa-viacoin:before{content:""}.fa-train:before{content:""}.fa-subway:before{content:""}.fa-medium:before{content:""}.fa-y-combinator:before,.fa-yc:before{content:""}.fa-optin-monster:before{content:""}.fa-opencart:before{content:""}.fa-expeditedssl:before{content:""}.fa-battery-4:before,.fa-battery-full:before,.fa-battery:before{content:""}.fa-battery-3:before,.fa-battery-three-quarters:before{content:""}.fa-battery-2:before,.fa-battery-half:before{content:""}.fa-battery-1:before,.fa-battery-quarter:before{content:""}.fa-battery-0:before,.fa-battery-empty:before{content:""}.fa-mouse-pointer:before{content:""}.fa-i-cursor:before{content:""}.fa-object-group:before{content:""}.fa-object-ungroup:before{content:""}.fa-sticky-note:before{content:""}.fa-sticky-note-o:before{content:""}.fa-cc-jcb:before{content:""}.fa-cc-diners-club:before{content:""}.fa-clone:before{content:""}.fa-balance-scale:before{content:""}.fa-hourglass-o:before{content:""}.fa-hourglass-1:before,.fa-hourglass-start:before{content:""}.fa-hourglass-2:before,.fa-hourglass-half:before{content:""}.fa-hourglass-3:before,.fa-hourglass-end:before{content:""}.fa-hourglass:before{content:""}.fa-hand-grab-o:before,.fa-hand-rock-o:before{content:""}.fa-hand-paper-o:before,.fa-hand-stop-o:before{content:""}.fa-hand-scissors-o:before{content:""}.fa-hand-lizard-o:before{content:""}.fa-hand-spock-o:before{content:""}.fa-hand-pointer-o:before{content:""}.fa-hand-peace-o:before{content:""}.fa-trademark:before{content:""}.fa-registered:before{content:""}.fa-creative-commons:before{content:""}.fa-gg:before{content:""}.fa-gg-circle:before{content:""}.fa-tripadvisor:before{content:""}.fa-odnoklassniki:before{content:""}.fa-odnoklassniki-square:before{content:""}.fa-get-pocket:before{content:""}.fa-wikipedia-w:before{content:""}.fa-safari:before{content:""}.fa-chrome:before{content:""}.fa-firefox:before{content:""}.fa-opera:before{content:""}.fa-internet-explorer:before{content:""}.fa-television:before,.fa-tv:before{content:""}.fa-contao:before{content:""}.fa-500px:before{content:""}.fa-amazon:before{content:""}.fa-calendar-plus-o:before{content:""}.fa-calendar-minus-o:before{content:""}.fa-calendar-times-o:before{content:""}.fa-calendar-check-o:before{content:""}.fa-industry:before{content:""}.fa-map-pin:before{content:""}.fa-map-signs:before{content:""}.fa-map-o:before{content:""}.fa-map:before{content:""}.fa-commenting:before{content:""}.fa-commenting-o:before{content:""}.fa-houzz:before{content:""}.fa-vimeo:before{content:""}.fa-black-tie:before{content:""}.fa-fonticons:before{content:""}.fa-reddit-alien:before{content:""}.fa-edge:before{content:""}.fa-credit-card-alt:before{content:""}.fa-codiepie:before{content:""}.fa-modx:before{content:""}.fa-fort-awesome:before{content:""}.fa-usb:before{content:""}.fa-product-hunt:before{content:""}.fa-mixcloud:before{content:""}.fa-scribd:before{content:""}.fa-pause-circle:before{content:""}.fa-pause-circle-o:before{content:""}.fa-stop-circle:before{content:""}.fa-stop-circle-o:before{content:""}.fa-shopping-bag:before{content:""}.fa-shopping-basket:before{content:""}.fa-hashtag:before{content:""}.fa-bluetooth:before{content:""}.fa-bluetooth-b:before{content:""}.fa-percent:before{content:""}.fa-gitlab:before,.icon-gitlab:before{content:""}.fa-wpbeginner:before{content:""}.fa-wpforms:before{content:""}.fa-envira:before{content:""}.fa-universal-access:before{content:""}.fa-wheelchair-alt:before{content:""}.fa-question-circle-o:before{content:""}.fa-blind:before{content:""}.fa-audio-description:before{content:""}.fa-volume-control-phone:before{content:""}.fa-braille:before{content:""}.fa-assistive-listening-systems:before{content:""}.fa-american-sign-language-interpreting:before,.fa-asl-interpreting:before{content:""}.fa-deaf:before,.fa-deafness:before,.fa-hard-of-hearing:before{content:""}.fa-glide:before{content:""}.fa-glide-g:before{content:""}.fa-sign-language:before,.fa-signing:before{content:""}.fa-low-vision:before{content:""}.fa-viadeo:before{content:""}.fa-viadeo-square:before{content:""}.fa-snapchat:before{content:""}.fa-snapchat-ghost:before{content:""}.fa-snapchat-square:before{content:""}.fa-pied-piper:before{content:""}.fa-first-order:before{content:""}.fa-yoast:before{content:""}.fa-themeisle:before{content:""}.fa-google-plus-circle:before,.fa-google-plus-official:before{content:""}.fa-fa:before,.fa-font-awesome:before{content:""}.fa-handshake-o:before{content:""}.fa-envelope-open:before{content:""}.fa-envelope-open-o:before{content:""}.fa-linode:before{content:""}.fa-address-book:before{content:""}.fa-address-book-o:before{content:""}.fa-address-card:before,.fa-vcard:before{content:""}.fa-address-card-o:before,.fa-vcard-o:before{content:""}.fa-user-circle:before{content:""}.fa-user-circle-o:before{content:""}.fa-user-o:before{content:""}.fa-id-badge:before{content:""}.fa-drivers-license:before,.fa-id-card:before{content:""}.fa-drivers-license-o:before,.fa-id-card-o:before{content:""}.fa-quora:before{content:""}.fa-free-code-camp:before{content:""}.fa-telegram:before{content:""}.fa-thermometer-4:before,.fa-thermometer-full:before,.fa-thermometer:before{content:""}.fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:""}.fa-thermometer-2:before,.fa-thermometer-half:before{content:""}.fa-thermometer-1:before,.fa-thermometer-quarter:before{content:""}.fa-thermometer-0:before,.fa-thermometer-empty:before{content:""}.fa-shower:before{content:""}.fa-bath:before,.fa-bathtub:before,.fa-s15:before{content:""}.fa-podcast:before{content:""}.fa-window-maximize:before{content:""}.fa-window-minimize:before{content:""}.fa-window-restore:before{content:""}.fa-times-rectangle:before,.fa-window-close:before{content:""}.fa-times-rectangle-o:before,.fa-window-close-o:before{content:""}.fa-bandcamp:before{content:""}.fa-grav:before{content:""}.fa-etsy:before{content:""}.fa-imdb:before{content:""}.fa-ravelry:before{content:""}.fa-eercast:before{content:""}.fa-microchip:before{content:""}.fa-snowflake-o:before{content:""}.fa-superpowers:before{content:""}.fa-wpexplorer:before{content:""}.fa-meetup:before{content:""}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-dropdown .caret,.wy-inline-validate.wy-inline-validate-danger .wy-input-context,.wy-inline-validate.wy-inline-validate-info .wy-input-context,.wy-inline-validate.wy-inline-validate-success .wy-input-context,.wy-inline-validate.wy-inline-validate-warning .wy-input-context,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{font-family:inherit}.fa:before,.icon:before,.rst-content .admonition-title:before,.rst-content .code-block-caption .headerlink:before,.rst-content .eqno .headerlink:before,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before{font-family:FontAwesome;display:inline-block;font-style:normal;font-weight:400;line-height:1;text-decoration:inherit}.rst-content .code-block-caption a .headerlink,.rst-content .eqno a .headerlink,.rst-content a .admonition-title,.rst-content code.download a span:first-child,.rst-content dl dt a .headerlink,.rst-content h1 a .headerlink,.rst-content h2 a .headerlink,.rst-content h3 a .headerlink,.rst-content h4 a .headerlink,.rst-content h5 a .headerlink,.rst-content h6 a .headerlink,.rst-content p.caption a .headerlink,.rst-content p a .headerlink,.rst-content table>caption a .headerlink,.rst-content tt.download a span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li a button.toctree-expand,a .fa,a .icon,a .rst-content .admonition-title,a .rst-content .code-block-caption .headerlink,a .rst-content .eqno .headerlink,a .rst-content code.download span:first-child,a .rst-content dl dt .headerlink,a .rst-content h1 .headerlink,a .rst-content h2 .headerlink,a .rst-content h3 .headerlink,a .rst-content h4 .headerlink,a .rst-content h5 .headerlink,a .rst-content h6 .headerlink,a .rst-content p.caption .headerlink,a .rst-content p .headerlink,a .rst-content table>caption .headerlink,a .rst-content tt.download span:first-child,a .wy-menu-vertical li button.toctree-expand{display:inline-block;text-decoration:inherit}.btn .fa,.btn .icon,.btn .rst-content .admonition-title,.btn .rst-content .code-block-caption .headerlink,.btn .rst-content .eqno .headerlink,.btn .rst-content code.download span:first-child,.btn .rst-content dl dt .headerlink,.btn .rst-content h1 .headerlink,.btn .rst-content h2 .headerlink,.btn .rst-content h3 .headerlink,.btn .rst-content h4 .headerlink,.btn .rst-content h5 .headerlink,.btn .rst-content h6 .headerlink,.btn .rst-content p .headerlink,.btn .rst-content table>caption .headerlink,.btn .rst-content tt.download span:first-child,.btn .wy-menu-vertical li.current>a button.toctree-expand,.btn .wy-menu-vertical li.on a button.toctree-expand,.btn .wy-menu-vertical li button.toctree-expand,.nav .fa,.nav .icon,.nav .rst-content .admonition-title,.nav .rst-content .code-block-caption .headerlink,.nav .rst-content .eqno .headerlink,.nav .rst-content code.download span:first-child,.nav .rst-content dl dt .headerlink,.nav .rst-content h1 .headerlink,.nav .rst-content h2 .headerlink,.nav .rst-content h3 .headerlink,.nav .rst-content h4 .headerlink,.nav .rst-content h5 .headerlink,.nav .rst-content h6 .headerlink,.nav .rst-content p .headerlink,.nav .rst-content table>caption .headerlink,.nav .rst-content tt.download span:first-child,.nav .wy-menu-vertical li.current>a button.toctree-expand,.nav .wy-menu-vertical li.on a button.toctree-expand,.nav .wy-menu-vertical li button.toctree-expand,.rst-content .btn .admonition-title,.rst-content .code-block-caption .btn .headerlink,.rst-content .code-block-caption .nav .headerlink,.rst-content .eqno .btn .headerlink,.rst-content .eqno .nav .headerlink,.rst-content .nav .admonition-title,.rst-content code.download .btn span:first-child,.rst-content code.download .nav span:first-child,.rst-content dl dt .btn .headerlink,.rst-content dl dt .nav .headerlink,.rst-content h1 .btn .headerlink,.rst-content h1 .nav .headerlink,.rst-content h2 .btn .headerlink,.rst-content h2 .nav .headerlink,.rst-content h3 .btn .headerlink,.rst-content h3 .nav .headerlink,.rst-content h4 .btn .headerlink,.rst-content h4 .nav .headerlink,.rst-content h5 .btn .headerlink,.rst-content h5 .nav .headerlink,.rst-content h6 .btn .headerlink,.rst-content h6 .nav .headerlink,.rst-content p .btn .headerlink,.rst-content p .nav .headerlink,.rst-content table>caption .btn .headerlink,.rst-content table>caption .nav .headerlink,.rst-content tt.download .btn span:first-child,.rst-content tt.download .nav span:first-child,.wy-menu-vertical li .btn button.toctree-expand,.wy-menu-vertical li.current>a .btn button.toctree-expand,.wy-menu-vertical li.current>a .nav button.toctree-expand,.wy-menu-vertical li .nav button.toctree-expand,.wy-menu-vertical li.on a .btn button.toctree-expand,.wy-menu-vertical li.on a .nav button.toctree-expand{display:inline}.btn .fa-large.icon,.btn .fa.fa-large,.btn .rst-content .code-block-caption .fa-large.headerlink,.btn .rst-content .eqno .fa-large.headerlink,.btn .rst-content .fa-large.admonition-title,.btn .rst-content code.download span.fa-large:first-child,.btn .rst-content dl dt .fa-large.headerlink,.btn .rst-content h1 .fa-large.headerlink,.btn .rst-content h2 .fa-large.headerlink,.btn .rst-content h3 .fa-large.headerlink,.btn .rst-content h4 .fa-large.headerlink,.btn .rst-content h5 .fa-large.headerlink,.btn .rst-content h6 .fa-large.headerlink,.btn .rst-content p .fa-large.headerlink,.btn .rst-content table>caption .fa-large.headerlink,.btn .rst-content tt.download span.fa-large:first-child,.btn .wy-menu-vertical li button.fa-large.toctree-expand,.nav .fa-large.icon,.nav .fa.fa-large,.nav .rst-content .code-block-caption .fa-large.headerlink,.nav .rst-content .eqno .fa-large.headerlink,.nav .rst-content .fa-large.admonition-title,.nav .rst-content code.download span.fa-large:first-child,.nav .rst-content dl dt .fa-large.headerlink,.nav .rst-content h1 .fa-large.headerlink,.nav .rst-content h2 .fa-large.headerlink,.nav .rst-content h3 .fa-large.headerlink,.nav .rst-content h4 .fa-large.headerlink,.nav .rst-content h5 .fa-large.headerlink,.nav .rst-content h6 .fa-large.headerlink,.nav .rst-content p .fa-large.headerlink,.nav .rst-content table>caption .fa-large.headerlink,.nav .rst-content tt.download span.fa-large:first-child,.nav .wy-menu-vertical li button.fa-large.toctree-expand,.rst-content .btn .fa-large.admonition-title,.rst-content .code-block-caption .btn .fa-large.headerlink,.rst-content .code-block-caption .nav .fa-large.headerlink,.rst-content .eqno .btn .fa-large.headerlink,.rst-content .eqno .nav .fa-large.headerlink,.rst-content .nav .fa-large.admonition-title,.rst-content code.download .btn span.fa-large:first-child,.rst-content code.download .nav span.fa-large:first-child,.rst-content dl dt .btn .fa-large.headerlink,.rst-content dl dt .nav .fa-large.headerlink,.rst-content h1 .btn .fa-large.headerlink,.rst-content h1 .nav .fa-large.headerlink,.rst-content h2 .btn .fa-large.headerlink,.rst-content h2 .nav .fa-large.headerlink,.rst-content h3 .btn .fa-large.headerlink,.rst-content h3 .nav .fa-large.headerlink,.rst-content h4 .btn .fa-large.headerlink,.rst-content h4 .nav .fa-large.headerlink,.rst-content h5 .btn .fa-large.headerlink,.rst-content h5 .nav .fa-large.headerlink,.rst-content h6 .btn .fa-large.headerlink,.rst-content h6 .nav .fa-large.headerlink,.rst-content p .btn .fa-large.headerlink,.rst-content p .nav .fa-large.headerlink,.rst-content table>caption .btn .fa-large.headerlink,.rst-content table>caption .nav .fa-large.headerlink,.rst-content tt.download .btn span.fa-large:first-child,.rst-content tt.download .nav span.fa-large:first-child,.wy-menu-vertical li .btn button.fa-large.toctree-expand,.wy-menu-vertical li .nav button.fa-large.toctree-expand{line-height:.9em}.btn .fa-spin.icon,.btn .fa.fa-spin,.btn .rst-content .code-block-caption .fa-spin.headerlink,.btn .rst-content .eqno .fa-spin.headerlink,.btn .rst-content .fa-spin.admonition-title,.btn .rst-content code.download span.fa-spin:first-child,.btn .rst-content dl dt .fa-spin.headerlink,.btn .rst-content h1 .fa-spin.headerlink,.btn .rst-content h2 .fa-spin.headerlink,.btn .rst-content h3 .fa-spin.headerlink,.btn .rst-content h4 .fa-spin.headerlink,.btn .rst-content h5 .fa-spin.headerlink,.btn .rst-content h6 .fa-spin.headerlink,.btn .rst-content p .fa-spin.headerlink,.btn .rst-content table>caption .fa-spin.headerlink,.btn .rst-content tt.download span.fa-spin:first-child,.btn .wy-menu-vertical li button.fa-spin.toctree-expand,.nav .fa-spin.icon,.nav .fa.fa-spin,.nav .rst-content .code-block-caption .fa-spin.headerlink,.nav .rst-content .eqno .fa-spin.headerlink,.nav .rst-content .fa-spin.admonition-title,.nav .rst-content code.download span.fa-spin:first-child,.nav .rst-content dl dt .fa-spin.headerlink,.nav .rst-content h1 .fa-spin.headerlink,.nav .rst-content h2 .fa-spin.headerlink,.nav .rst-content h3 .fa-spin.headerlink,.nav .rst-content h4 .fa-spin.headerlink,.nav .rst-content h5 .fa-spin.headerlink,.nav .rst-content h6 .fa-spin.headerlink,.nav .rst-content p .fa-spin.headerlink,.nav .rst-content table>caption .fa-spin.headerlink,.nav .rst-content tt.download span.fa-spin:first-child,.nav .wy-menu-vertical li button.fa-spin.toctree-expand,.rst-content .btn .fa-spin.admonition-title,.rst-content .code-block-caption .btn .fa-spin.headerlink,.rst-content .code-block-caption .nav .fa-spin.headerlink,.rst-content .eqno .btn .fa-spin.headerlink,.rst-content .eqno .nav .fa-spin.headerlink,.rst-content .nav .fa-spin.admonition-title,.rst-content code.download .btn span.fa-spin:first-child,.rst-content code.download .nav span.fa-spin:first-child,.rst-content dl dt .btn .fa-spin.headerlink,.rst-content dl dt .nav .fa-spin.headerlink,.rst-content h1 .btn .fa-spin.headerlink,.rst-content h1 .nav .fa-spin.headerlink,.rst-content h2 .btn .fa-spin.headerlink,.rst-content h2 .nav .fa-spin.headerlink,.rst-content h3 .btn .fa-spin.headerlink,.rst-content h3 .nav .fa-spin.headerlink,.rst-content h4 .btn .fa-spin.headerlink,.rst-content h4 .nav .fa-spin.headerlink,.rst-content h5 .btn .fa-spin.headerlink,.rst-content h5 .nav .fa-spin.headerlink,.rst-content h6 .btn .fa-spin.headerlink,.rst-content h6 .nav .fa-spin.headerlink,.rst-content p .btn .fa-spin.headerlink,.rst-content p .nav .fa-spin.headerlink,.rst-content table>caption .btn .fa-spin.headerlink,.rst-content table>caption .nav .fa-spin.headerlink,.rst-content tt.download .btn span.fa-spin:first-child,.rst-content tt.download .nav span.fa-spin:first-child,.wy-menu-vertical li .btn button.fa-spin.toctree-expand,.wy-menu-vertical li .nav button.fa-spin.toctree-expand{display:inline-block}.btn.fa:before,.btn.icon:before,.rst-content .btn.admonition-title:before,.rst-content .code-block-caption .btn.headerlink:before,.rst-content .eqno .btn.headerlink:before,.rst-content code.download span.btn:first-child:before,.rst-content dl dt .btn.headerlink:before,.rst-content h1 .btn.headerlink:before,.rst-content h2 .btn.headerlink:before,.rst-content h3 .btn.headerlink:before,.rst-content h4 .btn.headerlink:before,.rst-content h5 .btn.headerlink:before,.rst-content h6 .btn.headerlink:before,.rst-content p .btn.headerlink:before,.rst-content table>caption .btn.headerlink:before,.rst-content tt.download span.btn:first-child:before,.wy-menu-vertical li button.btn.toctree-expand:before{opacity:.5;-webkit-transition:opacity .05s ease-in;-moz-transition:opacity .05s ease-in;transition:opacity .05s ease-in}.btn.fa:hover:before,.btn.icon:hover:before,.rst-content .btn.admonition-title:hover:before,.rst-content .code-block-caption .btn.headerlink:hover:before,.rst-content .eqno .btn.headerlink:hover:before,.rst-content code.download span.btn:first-child:hover:before,.rst-content dl dt .btn.headerlink:hover:before,.rst-content h1 .btn.headerlink:hover:before,.rst-content h2 .btn.headerlink:hover:before,.rst-content h3 .btn.headerlink:hover:before,.rst-content h4 .btn.headerlink:hover:before,.rst-content h5 .btn.headerlink:hover:before,.rst-content h6 .btn.headerlink:hover:before,.rst-content p .btn.headerlink:hover:before,.rst-content table>caption .btn.headerlink:hover:before,.rst-content tt.download span.btn:first-child:hover:before,.wy-menu-vertical li button.btn.toctree-expand:hover:before{opacity:1}.btn-mini .fa:before,.btn-mini .icon:before,.btn-mini .rst-content .admonition-title:before,.btn-mini .rst-content .code-block-caption .headerlink:before,.btn-mini .rst-content .eqno .headerlink:before,.btn-mini .rst-content code.download span:first-child:before,.btn-mini .rst-content dl dt .headerlink:before,.btn-mini .rst-content h1 .headerlink:before,.btn-mini .rst-content h2 .headerlink:before,.btn-mini .rst-content h3 .headerlink:before,.btn-mini .rst-content h4 .headerlink:before,.btn-mini .rst-content h5 .headerlink:before,.btn-mini .rst-content h6 .headerlink:before,.btn-mini .rst-content p .headerlink:before,.btn-mini .rst-content table>caption .headerlink:before,.btn-mini .rst-content tt.download span:first-child:before,.btn-mini .wy-menu-vertical li button.toctree-expand:before,.rst-content .btn-mini .admonition-title:before,.rst-content .code-block-caption .btn-mini .headerlink:before,.rst-content .eqno .btn-mini .headerlink:before,.rst-content code.download .btn-mini span:first-child:before,.rst-content dl dt .btn-mini .headerlink:before,.rst-content h1 .btn-mini .headerlink:before,.rst-content h2 .btn-mini .headerlink:before,.rst-content h3 .btn-mini .headerlink:before,.rst-content h4 .btn-mini .headerlink:before,.rst-content h5 .btn-mini .headerlink:before,.rst-content h6 .btn-mini .headerlink:before,.rst-content p .btn-mini .headerlink:before,.rst-content table>caption .btn-mini .headerlink:before,.rst-content tt.download .btn-mini span:first-child:before,.wy-menu-vertical li .btn-mini button.toctree-expand:before{font-size:14px;vertical-align:-15%}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.wy-alert{padding:12px;line-height:24px;margin-bottom:24px;background:#e7f2fa}.rst-content .admonition-title,.wy-alert-title{font-weight:700;display:block;color:#fff;background:#6ab0de;padding:6px 12px;margin:-12px -12px 12px}.rst-content .danger,.rst-content .error,.rst-content .wy-alert-danger.admonition,.rst-content .wy-alert-danger.admonition-todo,.rst-content .wy-alert-danger.attention,.rst-content .wy-alert-danger.caution,.rst-content .wy-alert-danger.hint,.rst-content .wy-alert-danger.important,.rst-content .wy-alert-danger.note,.rst-content .wy-alert-danger.seealso,.rst-content .wy-alert-danger.tip,.rst-content .wy-alert-danger.warning,.wy-alert.wy-alert-danger{background:#fdf3f2}.rst-content .danger .admonition-title,.rst-content .danger .wy-alert-title,.rst-content .error .admonition-title,.rst-content .error .wy-alert-title,.rst-content .wy-alert-danger.admonition-todo .admonition-title,.rst-content .wy-alert-danger.admonition-todo .wy-alert-title,.rst-content .wy-alert-danger.admonition .admonition-title,.rst-content .wy-alert-danger.admonition .wy-alert-title,.rst-content .wy-alert-danger.attention .admonition-title,.rst-content .wy-alert-danger.attention .wy-alert-title,.rst-content .wy-alert-danger.caution .admonition-title,.rst-content .wy-alert-danger.caution .wy-alert-title,.rst-content .wy-alert-danger.hint .admonition-title,.rst-content .wy-alert-danger.hint .wy-alert-title,.rst-content .wy-alert-danger.important .admonition-title,.rst-content .wy-alert-danger.important .wy-alert-title,.rst-content .wy-alert-danger.note .admonition-title,.rst-content .wy-alert-danger.note .wy-alert-title,.rst-content .wy-alert-danger.seealso .admonition-title,.rst-content .wy-alert-danger.seealso .wy-alert-title,.rst-content .wy-alert-danger.tip .admonition-title,.rst-content .wy-alert-danger.tip .wy-alert-title,.rst-content .wy-alert-danger.warning .admonition-title,.rst-content .wy-alert-danger.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-danger .admonition-title,.wy-alert.wy-alert-danger .rst-content .admonition-title,.wy-alert.wy-alert-danger .wy-alert-title{background:#f29f97}.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .warning,.rst-content .wy-alert-warning.admonition,.rst-content .wy-alert-warning.danger,.rst-content .wy-alert-warning.error,.rst-content .wy-alert-warning.hint,.rst-content .wy-alert-warning.important,.rst-content .wy-alert-warning.note,.rst-content .wy-alert-warning.seealso,.rst-content .wy-alert-warning.tip,.wy-alert.wy-alert-warning{background:#ffedcc}.rst-content .admonition-todo .admonition-title,.rst-content .admonition-todo .wy-alert-title,.rst-content .attention .admonition-title,.rst-content .attention .wy-alert-title,.rst-content .caution .admonition-title,.rst-content .caution .wy-alert-title,.rst-content .warning .admonition-title,.rst-content .warning .wy-alert-title,.rst-content .wy-alert-warning.admonition .admonition-title,.rst-content .wy-alert-warning.admonition .wy-alert-title,.rst-content .wy-alert-warning.danger .admonition-title,.rst-content .wy-alert-warning.danger .wy-alert-title,.rst-content .wy-alert-warning.error .admonition-title,.rst-content .wy-alert-warning.error .wy-alert-title,.rst-content .wy-alert-warning.hint .admonition-title,.rst-content .wy-alert-warning.hint .wy-alert-title,.rst-content .wy-alert-warning.important .admonition-title,.rst-content .wy-alert-warning.important .wy-alert-title,.rst-content .wy-alert-warning.note .admonition-title,.rst-content .wy-alert-warning.note .wy-alert-title,.rst-content .wy-alert-warning.seealso .admonition-title,.rst-content .wy-alert-warning.seealso .wy-alert-title,.rst-content .wy-alert-warning.tip .admonition-title,.rst-content .wy-alert-warning.tip .wy-alert-title,.rst-content .wy-alert.wy-alert-warning .admonition-title,.wy-alert.wy-alert-warning .rst-content .admonition-title,.wy-alert.wy-alert-warning .wy-alert-title{background:#f0b37e}.rst-content .note,.rst-content .seealso,.rst-content .wy-alert-info.admonition,.rst-content .wy-alert-info.admonition-todo,.rst-content .wy-alert-info.attention,.rst-content .wy-alert-info.caution,.rst-content .wy-alert-info.danger,.rst-content .wy-alert-info.error,.rst-content .wy-alert-info.hint,.rst-content .wy-alert-info.important,.rst-content .wy-alert-info.tip,.rst-content .wy-alert-info.warning,.wy-alert.wy-alert-info{background:#e7f2fa}.rst-content .note .admonition-title,.rst-content .note .wy-alert-title,.rst-content .seealso .admonition-title,.rst-content .seealso .wy-alert-title,.rst-content .wy-alert-info.admonition-todo .admonition-title,.rst-content .wy-alert-info.admonition-todo .wy-alert-title,.rst-content .wy-alert-info.admonition .admonition-title,.rst-content .wy-alert-info.admonition .wy-alert-title,.rst-content .wy-alert-info.attention .admonition-title,.rst-content .wy-alert-info.attention .wy-alert-title,.rst-content .wy-alert-info.caution .admonition-title,.rst-content .wy-alert-info.caution .wy-alert-title,.rst-content .wy-alert-info.danger .admonition-title,.rst-content .wy-alert-info.danger .wy-alert-title,.rst-content .wy-alert-info.error .admonition-title,.rst-content .wy-alert-info.error .wy-alert-title,.rst-content .wy-alert-info.hint .admonition-title,.rst-content .wy-alert-info.hint .wy-alert-title,.rst-content .wy-alert-info.important .admonition-title,.rst-content .wy-alert-info.important .wy-alert-title,.rst-content .wy-alert-info.tip .admonition-title,.rst-content .wy-alert-info.tip .wy-alert-title,.rst-content .wy-alert-info.warning .admonition-title,.rst-content .wy-alert-info.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-info .admonition-title,.wy-alert.wy-alert-info .rst-content .admonition-title,.wy-alert.wy-alert-info .wy-alert-title{background:#6ab0de}.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .wy-alert-success.admonition,.rst-content .wy-alert-success.admonition-todo,.rst-content .wy-alert-success.attention,.rst-content .wy-alert-success.caution,.rst-content .wy-alert-success.danger,.rst-content .wy-alert-success.error,.rst-content .wy-alert-success.note,.rst-content .wy-alert-success.seealso,.rst-content .wy-alert-success.warning,.wy-alert.wy-alert-success{background:#dbfaf4}.rst-content .hint .admonition-title,.rst-content .hint .wy-alert-title,.rst-content .important .admonition-title,.rst-content .important .wy-alert-title,.rst-content .tip .admonition-title,.rst-content .tip .wy-alert-title,.rst-content .wy-alert-success.admonition-todo .admonition-title,.rst-content .wy-alert-success.admonition-todo .wy-alert-title,.rst-content .wy-alert-success.admonition .admonition-title,.rst-content .wy-alert-success.admonition .wy-alert-title,.rst-content .wy-alert-success.attention .admonition-title,.rst-content .wy-alert-success.attention .wy-alert-title,.rst-content .wy-alert-success.caution .admonition-title,.rst-content .wy-alert-success.caution .wy-alert-title,.rst-content .wy-alert-success.danger .admonition-title,.rst-content .wy-alert-success.danger .wy-alert-title,.rst-content .wy-alert-success.error .admonition-title,.rst-content .wy-alert-success.error .wy-alert-title,.rst-content .wy-alert-success.note .admonition-title,.rst-content .wy-alert-success.note .wy-alert-title,.rst-content .wy-alert-success.seealso .admonition-title,.rst-content .wy-alert-success.seealso .wy-alert-title,.rst-content .wy-alert-success.warning .admonition-title,.rst-content .wy-alert-success.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-success .admonition-title,.wy-alert.wy-alert-success .rst-content .admonition-title,.wy-alert.wy-alert-success .wy-alert-title{background:#1abc9c}.rst-content .wy-alert-neutral.admonition,.rst-content .wy-alert-neutral.admonition-todo,.rst-content .wy-alert-neutral.attention,.rst-content .wy-alert-neutral.caution,.rst-content .wy-alert-neutral.danger,.rst-content .wy-alert-neutral.error,.rst-content .wy-alert-neutral.hint,.rst-content .wy-alert-neutral.important,.rst-content .wy-alert-neutral.note,.rst-content .wy-alert-neutral.seealso,.rst-content .wy-alert-neutral.tip,.rst-content .wy-alert-neutral.warning,.wy-alert.wy-alert-neutral{background:#f3f6f6}.rst-content .wy-alert-neutral.admonition-todo .admonition-title,.rst-content .wy-alert-neutral.admonition-todo .wy-alert-title,.rst-content .wy-alert-neutral.admonition .admonition-title,.rst-content .wy-alert-neutral.admonition .wy-alert-title,.rst-content .wy-alert-neutral.attention .admonition-title,.rst-content .wy-alert-neutral.attention .wy-alert-title,.rst-content .wy-alert-neutral.caution .admonition-title,.rst-content .wy-alert-neutral.caution .wy-alert-title,.rst-content .wy-alert-neutral.danger .admonition-title,.rst-content .wy-alert-neutral.danger .wy-alert-title,.rst-content .wy-alert-neutral.error .admonition-title,.rst-content .wy-alert-neutral.error .wy-alert-title,.rst-content .wy-alert-neutral.hint .admonition-title,.rst-content .wy-alert-neutral.hint .wy-alert-title,.rst-content .wy-alert-neutral.important .admonition-title,.rst-content .wy-alert-neutral.important .wy-alert-title,.rst-content .wy-alert-neutral.note .admonition-title,.rst-content .wy-alert-neutral.note .wy-alert-title,.rst-content .wy-alert-neutral.seealso .admonition-title,.rst-content .wy-alert-neutral.seealso .wy-alert-title,.rst-content .wy-alert-neutral.tip .admonition-title,.rst-content .wy-alert-neutral.tip .wy-alert-title,.rst-content .wy-alert-neutral.warning .admonition-title,.rst-content .wy-alert-neutral.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-neutral .admonition-title,.wy-alert.wy-alert-neutral .rst-content .admonition-title,.wy-alert.wy-alert-neutral .wy-alert-title{color:#404040;background:#e1e4e5}.rst-content .wy-alert-neutral.admonition-todo a,.rst-content .wy-alert-neutral.admonition a,.rst-content .wy-alert-neutral.attention a,.rst-content .wy-alert-neutral.caution a,.rst-content .wy-alert-neutral.danger a,.rst-content .wy-alert-neutral.error a,.rst-content .wy-alert-neutral.hint a,.rst-content .wy-alert-neutral.important a,.rst-content .wy-alert-neutral.note a,.rst-content .wy-alert-neutral.seealso a,.rst-content .wy-alert-neutral.tip a,.rst-content .wy-alert-neutral.warning a,.wy-alert.wy-alert-neutral a{color:#2980b9}.rst-content .admonition-todo p:last-child,.rst-content .admonition p:last-child,.rst-content .attention p:last-child,.rst-content .caution p:last-child,.rst-content .danger p:last-child,.rst-content .error p:last-child,.rst-content .hint p:last-child,.rst-content .important p:last-child,.rst-content .note p:last-child,.rst-content .seealso p:last-child,.rst-content .tip p:last-child,.rst-content .warning p:last-child,.wy-alert p:last-child{margin-bottom:0}.wy-tray-container{position:fixed;bottom:0;left:0;z-index:600}.wy-tray-container li{display:block;width:300px;background:transparent;color:#fff;text-align:center;box-shadow:0 5px 5px 0 rgba(0,0,0,.1);padding:0 24px;min-width:20%;opacity:0;height:0;line-height:56px;overflow:hidden;-webkit-transition:all .3s ease-in;-moz-transition:all .3s ease-in;transition:all .3s ease-in}.wy-tray-container li.wy-tray-item-success{background:#27ae60}.wy-tray-container li.wy-tray-item-info{background:#2980b9}.wy-tray-container li.wy-tray-item-warning{background:#e67e22}.wy-tray-container li.wy-tray-item-danger{background:#e74c3c}.wy-tray-container li.on{opacity:1;height:56px}@media screen and (max-width:768px){.wy-tray-container{bottom:auto;top:0;width:100%}.wy-tray-container li{width:100%}}button{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle;cursor:pointer;line-height:normal;-webkit-appearance:button;*overflow:visible}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}button[disabled]{cursor:default}.btn{display:inline-block;border-radius:2px;line-height:normal;white-space:nowrap;text-align:center;cursor:pointer;font-size:100%;padding:6px 12px 8px;color:#fff;border:1px solid rgba(0,0,0,.1);background-color:#27ae60;text-decoration:none;font-weight:400;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 2px -1px hsla(0,0%,100%,.5),inset 0 -2px 0 0 rgba(0,0,0,.1);outline-none:false;vertical-align:middle;*display:inline;zoom:1;-webkit-user-drag:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;-webkit-transition:all .1s linear;-moz-transition:all .1s linear;transition:all .1s linear}.btn-hover{background:#2e8ece;color:#fff}.btn:hover{background:#2cc36b;color:#fff}.btn:focus{background:#2cc36b;outline:0}.btn:active{box-shadow:inset 0 -1px 0 0 rgba(0,0,0,.05),inset 0 2px 0 0 rgba(0,0,0,.1);padding:8px 12px 6px}.btn:visited{color:#fff}.btn-disabled,.btn-disabled:active,.btn-disabled:focus,.btn-disabled:hover,.btn:disabled{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:.4;cursor:not-allowed;box-shadow:none}.btn::-moz-focus-inner{padding:0;border:0}.btn-small{font-size:80%}.btn-info{background-color:#2980b9!important}.btn-info:hover{background-color:#2e8ece!important}.btn-neutral{background-color:#f3f6f6!important;color:#404040!important}.btn-neutral:hover{background-color:#e5ebeb!important;color:#404040}.btn-neutral:visited{color:#404040!important}.btn-success{background-color:#27ae60!important}.btn-success:hover{background-color:#295!important}.btn-danger{background-color:#e74c3c!important}.btn-danger:hover{background-color:#ea6153!important}.btn-warning{background-color:#e67e22!important}.btn-warning:hover{background-color:#e98b39!important}.btn-invert{background-color:#222}.btn-invert:hover{background-color:#2f2f2f!important}.btn-link{background-color:transparent!important;color:#2980b9;box-shadow:none;border-color:transparent!important}.btn-link:active,.btn-link:hover{background-color:transparent!important;color:#409ad5!important;box-shadow:none}.btn-link:visited{color:#9b59b6}.wy-btn-group .btn,.wy-control .btn{vertical-align:middle}.wy-btn-group{margin-bottom:24px;*zoom:1}.wy-btn-group:after,.wy-btn-group:before{display:table;content:""}.wy-btn-group:after{clear:both}.wy-dropdown{position:relative;display:inline-block}.wy-dropdown-active .wy-dropdown-menu{display:block}.wy-dropdown-menu{position:absolute;left:0;display:none;float:left;top:100%;min-width:100%;background:#fcfcfc;z-index:100;border:1px solid #cfd7dd;box-shadow:0 2px 2px 0 rgba(0,0,0,.1);padding:12px}.wy-dropdown-menu>dd>a{display:block;clear:both;color:#404040;white-space:nowrap;font-size:90%;padding:0 12px;cursor:pointer}.wy-dropdown-menu>dd>a:hover{background:#2980b9;color:#fff}.wy-dropdown-menu>dd.divider{border-top:1px solid #cfd7dd;margin:6px 0}.wy-dropdown-menu>dd.search{padding-bottom:12px}.wy-dropdown-menu>dd.search input[type=search]{width:100%}.wy-dropdown-menu>dd.call-to-action{background:#e3e3e3;text-transform:uppercase;font-weight:500;font-size:80%}.wy-dropdown-menu>dd.call-to-action:hover{background:#e3e3e3}.wy-dropdown-menu>dd.call-to-action .btn{color:#fff}.wy-dropdown.wy-dropdown-up .wy-dropdown-menu{bottom:100%;top:auto;left:auto;right:0}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu{background:#fcfcfc;margin-top:2px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a{padding:6px 12px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a:hover{background:#2980b9;color:#fff}.wy-dropdown.wy-dropdown-left .wy-dropdown-menu{right:0;left:auto;text-align:right}.wy-dropdown-arrow:before{content:" ";border-bottom:5px solid #f5f5f5;border-left:5px solid transparent;border-right:5px solid transparent;position:absolute;display:block;top:-4px;left:50%;margin-left:-3px}.wy-dropdown-arrow.wy-dropdown-arrow-left:before{left:11px}.wy-form-stacked select{display:block}.wy-form-aligned .wy-help-inline,.wy-form-aligned input,.wy-form-aligned label,.wy-form-aligned select,.wy-form-aligned textarea{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-form-aligned .wy-control-group>label{display:inline-block;vertical-align:middle;width:10em;margin:6px 12px 0 0;float:left}.wy-form-aligned .wy-control{float:left}.wy-form-aligned .wy-control label{display:block}.wy-form-aligned .wy-control select{margin-top:6px}fieldset{margin:0}fieldset,legend{border:0;padding:0}legend{width:100%;white-space:normal;margin-bottom:24px;font-size:150%;*margin-left:-7px}label,legend{display:block}label{margin:0 0 .3125em;color:#333;font-size:90%}input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}.wy-control-group{margin-bottom:24px;max-width:1200px;margin-left:auto;margin-right:auto;*zoom:1}.wy-control-group:after,.wy-control-group:before{display:table;content:""}.wy-control-group:after{clear:both}.wy-control-group.wy-control-group-required>label:after{content:" *";color:#e74c3c}.wy-control-group .wy-form-full,.wy-control-group .wy-form-halves,.wy-control-group .wy-form-thirds{padding-bottom:12px}.wy-control-group .wy-form-full input[type=color],.wy-control-group .wy-form-full input[type=date],.wy-control-group .wy-form-full input[type=datetime-local],.wy-control-group .wy-form-full input[type=datetime],.wy-control-group .wy-form-full input[type=email],.wy-control-group .wy-form-full input[type=month],.wy-control-group .wy-form-full input[type=number],.wy-control-group .wy-form-full input[type=password],.wy-control-group .wy-form-full input[type=search],.wy-control-group .wy-form-full input[type=tel],.wy-control-group .wy-form-full input[type=text],.wy-control-group .wy-form-full input[type=time],.wy-control-group .wy-form-full input[type=url],.wy-control-group .wy-form-full input[type=week],.wy-control-group .wy-form-full select,.wy-control-group .wy-form-halves input[type=color],.wy-control-group .wy-form-halves input[type=date],.wy-control-group .wy-form-halves input[type=datetime-local],.wy-control-group .wy-form-halves input[type=datetime],.wy-control-group .wy-form-halves input[type=email],.wy-control-group .wy-form-halves input[type=month],.wy-control-group .wy-form-halves input[type=number],.wy-control-group .wy-form-halves input[type=password],.wy-control-group .wy-form-halves input[type=search],.wy-control-group .wy-form-halves input[type=tel],.wy-control-group .wy-form-halves input[type=text],.wy-control-group .wy-form-halves input[type=time],.wy-control-group .wy-form-halves input[type=url],.wy-control-group .wy-form-halves input[type=week],.wy-control-group .wy-form-halves select,.wy-control-group .wy-form-thirds input[type=color],.wy-control-group .wy-form-thirds input[type=date],.wy-control-group .wy-form-thirds input[type=datetime-local],.wy-control-group .wy-form-thirds input[type=datetime],.wy-control-group .wy-form-thirds input[type=email],.wy-control-group .wy-form-thirds input[type=month],.wy-control-group .wy-form-thirds input[type=number],.wy-control-group .wy-form-thirds input[type=password],.wy-control-group .wy-form-thirds input[type=search],.wy-control-group .wy-form-thirds input[type=tel],.wy-control-group .wy-form-thirds input[type=text],.wy-control-group .wy-form-thirds input[type=time],.wy-control-group .wy-form-thirds input[type=url],.wy-control-group .wy-form-thirds input[type=week],.wy-control-group .wy-form-thirds select{width:100%}.wy-control-group .wy-form-full{float:left;display:block;width:100%;margin-right:0}.wy-control-group .wy-form-full:last-child{margin-right:0}.wy-control-group .wy-form-halves{float:left;display:block;margin-right:2.35765%;width:48.82117%}.wy-control-group .wy-form-halves:last-child,.wy-control-group .wy-form-halves:nth-of-type(2n){margin-right:0}.wy-control-group .wy-form-halves:nth-of-type(odd){clear:left}.wy-control-group .wy-form-thirds{float:left;display:block;margin-right:2.35765%;width:31.76157%}.wy-control-group .wy-form-thirds:last-child,.wy-control-group .wy-form-thirds:nth-of-type(3n){margin-right:0}.wy-control-group .wy-form-thirds:nth-of-type(3n+1){clear:left}.wy-control-group.wy-control-group-no-input .wy-control,.wy-control-no-input{margin:6px 0 0;font-size:90%}.wy-control-no-input{display:inline-block}.wy-control-group.fluid-input input[type=color],.wy-control-group.fluid-input input[type=date],.wy-control-group.fluid-input input[type=datetime-local],.wy-control-group.fluid-input input[type=datetime],.wy-control-group.fluid-input input[type=email],.wy-control-group.fluid-input input[type=month],.wy-control-group.fluid-input input[type=number],.wy-control-group.fluid-input input[type=password],.wy-control-group.fluid-input input[type=search],.wy-control-group.fluid-input input[type=tel],.wy-control-group.fluid-input input[type=text],.wy-control-group.fluid-input input[type=time],.wy-control-group.fluid-input input[type=url],.wy-control-group.fluid-input input[type=week]{width:100%}.wy-form-message-inline{padding-left:.3em;color:#666;font-size:90%}.wy-form-message{display:block;color:#999;font-size:70%;margin-top:.3125em;font-style:italic}.wy-form-message p{font-size:inherit;font-style:italic;margin-bottom:6px}.wy-form-message p:last-child{margin-bottom:0}input{line-height:normal}input[type=button],input[type=reset],input[type=submit]{-webkit-appearance:button;cursor:pointer;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;*overflow:visible}input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week]{-webkit-appearance:none;padding:6px;display:inline-block;border:1px solid #ccc;font-size:80%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 3px #ddd;border-radius:0;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}input[type=datetime-local]{padding:.34375em .625em}input[disabled]{cursor:default}input[type=checkbox],input[type=radio]{padding:0;margin-right:.3125em;*height:13px;*width:13px}input[type=checkbox],input[type=radio],input[type=search]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}input[type=search]::-webkit-search-cancel-button,input[type=search]::-webkit-search-decoration{-webkit-appearance:none}input[type=color]:focus,input[type=date]:focus,input[type=datetime-local]:focus,input[type=datetime]:focus,input[type=email]:focus,input[type=month]:focus,input[type=number]:focus,input[type=password]:focus,input[type=search]:focus,input[type=tel]:focus,input[type=text]:focus,input[type=time]:focus,input[type=url]:focus,input[type=week]:focus{outline:0;outline:thin dotted\9;border-color:#333}input.no-focus:focus{border-color:#ccc!important}input[type=checkbox]:focus,input[type=file]:focus,input[type=radio]:focus{outline:thin dotted #333;outline:1px auto #129fea}input[type=color][disabled],input[type=date][disabled],input[type=datetime-local][disabled],input[type=datetime][disabled],input[type=email][disabled],input[type=month][disabled],input[type=number][disabled],input[type=password][disabled],input[type=search][disabled],input[type=tel][disabled],input[type=text][disabled],input[type=time][disabled],input[type=url][disabled],input[type=week][disabled]{cursor:not-allowed;background-color:#fafafa}input:focus:invalid,select:focus:invalid,textarea:focus:invalid{color:#e74c3c;border:1px solid #e74c3c}input:focus:invalid:focus,select:focus:invalid:focus,textarea:focus:invalid:focus{border-color:#e74c3c}input[type=checkbox]:focus:invalid:focus,input[type=file]:focus:invalid:focus,input[type=radio]:focus:invalid:focus{outline-color:#e74c3c}input.wy-input-large{padding:12px;font-size:100%}textarea{overflow:auto;vertical-align:top;width:100%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif}select,textarea{padding:.5em .625em;display:inline-block;border:1px solid #ccc;font-size:80%;box-shadow:inset 0 1px 3px #ddd;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}select{border:1px solid #ccc;background-color:#fff}select[multiple]{height:auto}select:focus,textarea:focus{outline:0}input[readonly],select[disabled],select[readonly],textarea[disabled],textarea[readonly]{cursor:not-allowed;background-color:#fafafa}input[type=checkbox][disabled],input[type=radio][disabled]{cursor:not-allowed}.wy-checkbox,.wy-radio{margin:6px 0;color:#404040;display:block}.wy-checkbox input,.wy-radio input{vertical-align:baseline}.wy-form-message-inline{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-input-prefix,.wy-input-suffix{white-space:nowrap;padding:6px}.wy-input-prefix .wy-input-context,.wy-input-suffix .wy-input-context{line-height:27px;padding:0 8px;display:inline-block;font-size:80%;background-color:#f3f6f6;border:1px solid #ccc;color:#999}.wy-input-suffix .wy-input-context{border-left:0}.wy-input-prefix .wy-input-context{border-right:0}.wy-switch{position:relative;display:block;height:24px;margin-top:12px;cursor:pointer}.wy-switch:before{left:0;top:0;width:36px;height:12px;background:#ccc}.wy-switch:after,.wy-switch:before{position:absolute;content:"";display:block;border-radius:4px;-webkit-transition:all .2s ease-in-out;-moz-transition:all .2s ease-in-out;transition:all .2s ease-in-out}.wy-switch:after{width:18px;height:18px;background:#999;left:-3px;top:-3px}.wy-switch span{position:absolute;left:48px;display:block;font-size:12px;color:#ccc;line-height:1}.wy-switch.active:before{background:#1e8449}.wy-switch.active:after{left:24px;background:#27ae60}.wy-switch.disabled{cursor:not-allowed;opacity:.8}.wy-control-group.wy-control-group-error .wy-form-message,.wy-control-group.wy-control-group-error>label{color:#e74c3c}.wy-control-group.wy-control-group-error input[type=color],.wy-control-group.wy-control-group-error input[type=date],.wy-control-group.wy-control-group-error input[type=datetime-local],.wy-control-group.wy-control-group-error input[type=datetime],.wy-control-group.wy-control-group-error input[type=email],.wy-control-group.wy-control-group-error input[type=month],.wy-control-group.wy-control-group-error input[type=number],.wy-control-group.wy-control-group-error input[type=password],.wy-control-group.wy-control-group-error input[type=search],.wy-control-group.wy-control-group-error input[type=tel],.wy-control-group.wy-control-group-error input[type=text],.wy-control-group.wy-control-group-error input[type=time],.wy-control-group.wy-control-group-error input[type=url],.wy-control-group.wy-control-group-error input[type=week],.wy-control-group.wy-control-group-error textarea{border:1px solid #e74c3c}.wy-inline-validate{white-space:nowrap}.wy-inline-validate .wy-input-context{padding:.5em .625em;display:inline-block;font-size:80%}.wy-inline-validate.wy-inline-validate-success .wy-input-context{color:#27ae60}.wy-inline-validate.wy-inline-validate-danger .wy-input-context{color:#e74c3c}.wy-inline-validate.wy-inline-validate-warning .wy-input-context{color:#e67e22}.wy-inline-validate.wy-inline-validate-info .wy-input-context{color:#2980b9}.rotate-90{-webkit-transform:rotate(90deg);-moz-transform:rotate(90deg);-ms-transform:rotate(90deg);-o-transform:rotate(90deg);transform:rotate(90deg)}.rotate-180{-webkit-transform:rotate(180deg);-moz-transform:rotate(180deg);-ms-transform:rotate(180deg);-o-transform:rotate(180deg);transform:rotate(180deg)}.rotate-270{-webkit-transform:rotate(270deg);-moz-transform:rotate(270deg);-ms-transform:rotate(270deg);-o-transform:rotate(270deg);transform:rotate(270deg)}.mirror{-webkit-transform:scaleX(-1);-moz-transform:scaleX(-1);-ms-transform:scaleX(-1);-o-transform:scaleX(-1);transform:scaleX(-1)}.mirror.rotate-90{-webkit-transform:scaleX(-1) rotate(90deg);-moz-transform:scaleX(-1) rotate(90deg);-ms-transform:scaleX(-1) rotate(90deg);-o-transform:scaleX(-1) rotate(90deg);transform:scaleX(-1) rotate(90deg)}.mirror.rotate-180{-webkit-transform:scaleX(-1) rotate(180deg);-moz-transform:scaleX(-1) rotate(180deg);-ms-transform:scaleX(-1) rotate(180deg);-o-transform:scaleX(-1) rotate(180deg);transform:scaleX(-1) rotate(180deg)}.mirror.rotate-270{-webkit-transform:scaleX(-1) rotate(270deg);-moz-transform:scaleX(-1) rotate(270deg);-ms-transform:scaleX(-1) rotate(270deg);-o-transform:scaleX(-1) rotate(270deg);transform:scaleX(-1) rotate(270deg)}@media only screen and (max-width:480px){.wy-form button[type=submit]{margin:.7em 0 0}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=text],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week],.wy-form label{margin-bottom:.3em;display:block}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week]{margin-bottom:0}.wy-form-aligned .wy-control-group label{margin-bottom:.3em;text-align:left;display:block;width:100%}.wy-form-aligned .wy-control{margin:1.5em 0 0}.wy-form-message,.wy-form-message-inline,.wy-form .wy-help-inline{display:block;font-size:80%;padding:6px 0}}@media screen and (max-width:768px){.tablet-hide{display:none}}@media screen and (max-width:480px){.mobile-hide{display:none}}.float-left{float:left}.float-right{float:right}.full-width{width:100%}.rst-content table.docutils,.rst-content table.field-list,.wy-table{border-collapse:collapse;border-spacing:0;empty-cells:show;margin-bottom:24px}.rst-content table.docutils caption,.rst-content table.field-list caption,.wy-table caption{color:#000;font:italic 85%/1 arial,sans-serif;padding:1em 0;text-align:center}.rst-content table.docutils td,.rst-content table.docutils th,.rst-content table.field-list td,.rst-content table.field-list th,.wy-table td,.wy-table th{font-size:90%;margin:0;overflow:visible;padding:8px 16px}.rst-content table.docutils td:first-child,.rst-content table.docutils th:first-child,.rst-content table.field-list td:first-child,.rst-content table.field-list th:first-child,.wy-table td:first-child,.wy-table th:first-child{border-left-width:0}.rst-content table.docutils thead,.rst-content table.field-list thead,.wy-table thead{color:#000;text-align:left;vertical-align:bottom;white-space:nowrap}.rst-content table.docutils thead th,.rst-content table.field-list thead th,.wy-table thead th{font-weight:700;border-bottom:2px solid #e1e4e5}.rst-content table.docutils td,.rst-content table.field-list td,.wy-table td{background-color:transparent;vertical-align:middle}.rst-content table.docutils td p,.rst-content table.field-list td p,.wy-table td p{line-height:18px}.rst-content table.docutils td p:last-child,.rst-content table.field-list td p:last-child,.wy-table td p:last-child{margin-bottom:0}.rst-content table.docutils .wy-table-cell-min,.rst-content table.field-list .wy-table-cell-min,.wy-table .wy-table-cell-min{width:1%;padding-right:0}.rst-content table.docutils .wy-table-cell-min input[type=checkbox],.rst-content table.field-list .wy-table-cell-min input[type=checkbox],.wy-table .wy-table-cell-min input[type=checkbox]{margin:0}.wy-table-secondary{color:grey;font-size:90%}.wy-table-tertiary{color:grey;font-size:80%}.rst-content table.docutils:not(.field-list) tr:nth-child(2n-1) td,.wy-table-backed,.wy-table-odd td,.wy-table-striped tr:nth-child(2n-1) td{background-color:#f3f6f6}.rst-content table.docutils,.wy-table-bordered-all{border:1px solid #e1e4e5}.rst-content table.docutils td,.wy-table-bordered-all td{border-bottom:1px solid #e1e4e5;border-left:1px solid #e1e4e5}.rst-content table.docutils tbody>tr:last-child td,.wy-table-bordered-all tbody>tr:last-child td{border-bottom-width:0}.wy-table-bordered{border:1px solid #e1e4e5}.wy-table-bordered-rows td{border-bottom:1px solid #e1e4e5}.wy-table-bordered-rows tbody>tr:last-child td{border-bottom-width:0}.wy-table-horizontal td,.wy-table-horizontal th{border-width:0 0 1px;border-bottom:1px solid #e1e4e5}.wy-table-horizontal tbody>tr:last-child td{border-bottom-width:0}.wy-table-responsive{margin-bottom:24px;max-width:100%;overflow:auto}.wy-table-responsive table{margin-bottom:0!important}.wy-table-responsive table td,.wy-table-responsive table th{white-space:nowrap}a{color:#2980b9;text-decoration:none;cursor:pointer}a:hover{color:#3091d1}a:visited{color:#9b59b6}html{height:100%}body,html{overflow-x:hidden}body{font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;font-weight:400;color:#404040;min-height:100%;background:#edf0f2}.wy-text-left{text-align:left}.wy-text-center{text-align:center}.wy-text-right{text-align:right}.wy-text-large{font-size:120%}.wy-text-normal{font-size:100%}.wy-text-small,small{font-size:80%}.wy-text-strike{text-decoration:line-through}.wy-text-warning{color:#e67e22!important}a.wy-text-warning:hover{color:#eb9950!important}.wy-text-info{color:#2980b9!important}a.wy-text-info:hover{color:#409ad5!important}.wy-text-success{color:#27ae60!important}a.wy-text-success:hover{color:#36d278!important}.wy-text-danger{color:#e74c3c!important}a.wy-text-danger:hover{color:#ed7669!important}.wy-text-neutral{color:#404040!important}a.wy-text-neutral:hover{color:#595959!important}.rst-content .toctree-wrapper>p.caption,h1,h2,h3,h4,h5,h6,legend{margin-top:0;font-weight:700;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif}p{line-height:24px;font-size:16px;margin:0 0 24px}h1{font-size:175%}.rst-content .toctree-wrapper>p.caption,h2{font-size:150%}h3{font-size:125%}h4{font-size:115%}h5{font-size:110%}h6{font-size:100%}hr{display:block;height:1px;border:0;border-top:1px solid #e1e4e5;margin:24px 0;padding:0}.rst-content code,.rst-content tt,code{white-space:nowrap;max-width:100%;background:#fff;border:1px solid #e1e4e5;font-size:75%;padding:0 5px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#e74c3c;overflow-x:auto}.rst-content tt.code-large,code.code-large{font-size:90%}.rst-content .section ul,.rst-content .toctree-wrapper ul,.rst-content section ul,.wy-plain-list-disc,article ul{list-style:disc;line-height:24px;margin-bottom:24px}.rst-content .section ul li,.rst-content .toctree-wrapper ul li,.rst-content section ul li,.wy-plain-list-disc li,article ul li{list-style:disc;margin-left:24px}.rst-content .section ul li p:last-child,.rst-content .section ul li ul,.rst-content .toctree-wrapper ul li p:last-child,.rst-content .toctree-wrapper ul li ul,.rst-content section ul li p:last-child,.rst-content section ul li ul,.wy-plain-list-disc li p:last-child,.wy-plain-list-disc li ul,article ul li p:last-child,article ul li ul{margin-bottom:0}.rst-content .section ul li li,.rst-content .toctree-wrapper ul li li,.rst-content section ul li li,.wy-plain-list-disc li li,article ul li li{list-style:circle}.rst-content .section ul li li li,.rst-content .toctree-wrapper ul li li li,.rst-content section ul li li li,.wy-plain-list-disc li li li,article ul li li li{list-style:square}.rst-content .section ul li ol li,.rst-content .toctree-wrapper ul li ol li,.rst-content section ul li ol li,.wy-plain-list-disc li ol li,article ul li ol li{list-style:decimal}.rst-content .section ol,.rst-content .section ol.arabic,.rst-content .toctree-wrapper ol,.rst-content .toctree-wrapper ol.arabic,.rst-content section ol,.rst-content section ol.arabic,.wy-plain-list-decimal,article ol{list-style:decimal;line-height:24px;margin-bottom:24px}.rst-content .section ol.arabic li,.rst-content .section ol li,.rst-content .toctree-wrapper ol.arabic li,.rst-content .toctree-wrapper ol li,.rst-content section ol.arabic li,.rst-content section ol li,.wy-plain-list-decimal li,article ol li{list-style:decimal;margin-left:24px}.rst-content .section ol.arabic li ul,.rst-content .section ol li p:last-child,.rst-content .section ol li ul,.rst-content .toctree-wrapper ol.arabic li ul,.rst-content .toctree-wrapper ol li p:last-child,.rst-content .toctree-wrapper ol li ul,.rst-content section ol.arabic li ul,.rst-content section ol li p:last-child,.rst-content section ol li ul,.wy-plain-list-decimal li p:last-child,.wy-plain-list-decimal li ul,article ol li p:last-child,article ol li ul{margin-bottom:0}.rst-content .section ol.arabic li ul li,.rst-content .section ol li ul li,.rst-content .toctree-wrapper ol.arabic li ul li,.rst-content .toctree-wrapper ol li ul li,.rst-content section ol.arabic li ul li,.rst-content section ol li ul li,.wy-plain-list-decimal li ul li,article ol li ul li{list-style:disc}.wy-breadcrumbs{*zoom:1}.wy-breadcrumbs:after,.wy-breadcrumbs:before{display:table;content:""}.wy-breadcrumbs:after{clear:both}.wy-breadcrumbs>li{display:inline-block;padding-top:5px}.wy-breadcrumbs>li.wy-breadcrumbs-aside{float:right}.rst-content .wy-breadcrumbs>li code,.rst-content .wy-breadcrumbs>li tt,.wy-breadcrumbs>li .rst-content tt,.wy-breadcrumbs>li code{all:inherit;color:inherit}.breadcrumb-item:before{content:"/";color:#bbb;font-size:13px;padding:0 6px 0 3px}.wy-breadcrumbs-extra{margin-bottom:0;color:#b3b3b3;font-size:80%;display:inline-block}@media screen and (max-width:480px){.wy-breadcrumbs-extra,.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}@media print{.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}html{font-size:16px}.wy-affix{position:fixed;top:1.618em}.wy-menu a:hover{text-decoration:none}.wy-menu-horiz{*zoom:1}.wy-menu-horiz:after,.wy-menu-horiz:before{display:table;content:""}.wy-menu-horiz:after{clear:both}.wy-menu-horiz li,.wy-menu-horiz ul{display:inline-block}.wy-menu-horiz li:hover{background:hsla(0,0%,100%,.1)}.wy-menu-horiz li.divide-left{border-left:1px solid #404040}.wy-menu-horiz li.divide-right{border-right:1px solid #404040}.wy-menu-horiz a{height:32px;display:inline-block;line-height:32px;padding:0 16px}.wy-menu-vertical{width:300px}.wy-menu-vertical header,.wy-menu-vertical p.caption{color:#55a5d9;height:32px;line-height:32px;padding:0 1.618em;margin:12px 0 0;display:block;font-weight:700;text-transform:uppercase;font-size:85%;white-space:nowrap}.wy-menu-vertical ul{margin-bottom:0}.wy-menu-vertical li.divide-top{border-top:1px solid #404040}.wy-menu-vertical li.divide-bottom{border-bottom:1px solid #404040}.wy-menu-vertical li.current{background:#e3e3e3}.wy-menu-vertical li.current a{color:grey;border-right:1px solid #c9c9c9;padding:.4045em 2.427em}.wy-menu-vertical li.current a:hover{background:#d6d6d6}.rst-content .wy-menu-vertical li tt,.wy-menu-vertical li .rst-content tt,.wy-menu-vertical li code{border:none;background:inherit;color:inherit;padding-left:0;padding-right:0}.wy-menu-vertical li button.toctree-expand{display:block;float:left;margin-left:-1.2em;line-height:18px;color:#4d4d4d;border:none;background:none;padding:0}.wy-menu-vertical li.current>a,.wy-menu-vertical li.on a{color:#404040;font-weight:700;position:relative;background:#fcfcfc;border:none;padding:.4045em 1.618em}.wy-menu-vertical li.current>a:hover,.wy-menu-vertical li.on a:hover{background:#fcfcfc}.wy-menu-vertical li.current>a:hover button.toctree-expand,.wy-menu-vertical li.on a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand{display:block;line-height:18px;color:#333}.wy-menu-vertical li.toctree-l1.current>a{border-bottom:1px solid #c9c9c9;border-top:1px solid #c9c9c9}.wy-menu-vertical .toctree-l1.current .toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .toctree-l11>ul{display:none}.wy-menu-vertical .toctree-l1.current .current.toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .current.toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .current.toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .current.toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .current.toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .current.toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .current.toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .current.toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .current.toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .current.toctree-l11>ul{display:block}.wy-menu-vertical li.toctree-l3,.wy-menu-vertical li.toctree-l4{font-size:.9em}.wy-menu-vertical li.toctree-l2 a,.wy-menu-vertical li.toctree-l3 a,.wy-menu-vertical li.toctree-l4 a,.wy-menu-vertical li.toctree-l5 a,.wy-menu-vertical li.toctree-l6 a,.wy-menu-vertical li.toctree-l7 a,.wy-menu-vertical li.toctree-l8 a,.wy-menu-vertical li.toctree-l9 a,.wy-menu-vertical li.toctree-l10 a{color:#404040}.wy-menu-vertical li.toctree-l2 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l3 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l4 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l5 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l6 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l7 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l8 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l9 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l10 a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a,.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a,.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a,.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a,.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a,.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a,.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a,.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{display:block}.wy-menu-vertical li.toctree-l2.current>a{padding:.4045em 2.427em}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{padding:.4045em 1.618em .4045em 4.045em}.wy-menu-vertical li.toctree-l3.current>a{padding:.4045em 4.045em}.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{padding:.4045em 1.618em .4045em 5.663em}.wy-menu-vertical li.toctree-l4.current>a{padding:.4045em 5.663em}.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a{padding:.4045em 1.618em .4045em 7.281em}.wy-menu-vertical li.toctree-l5.current>a{padding:.4045em 7.281em}.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a{padding:.4045em 1.618em .4045em 8.899em}.wy-menu-vertical li.toctree-l6.current>a{padding:.4045em 8.899em}.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a{padding:.4045em 1.618em .4045em 10.517em}.wy-menu-vertical li.toctree-l7.current>a{padding:.4045em 10.517em}.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a{padding:.4045em 1.618em .4045em 12.135em}.wy-menu-vertical li.toctree-l8.current>a{padding:.4045em 12.135em}.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a{padding:.4045em 1.618em .4045em 13.753em}.wy-menu-vertical li.toctree-l9.current>a{padding:.4045em 13.753em}.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a{padding:.4045em 1.618em .4045em 15.371em}.wy-menu-vertical li.toctree-l10.current>a{padding:.4045em 15.371em}.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{padding:.4045em 1.618em .4045em 16.989em}.wy-menu-vertical li.toctree-l2.current>a,.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{background:#c9c9c9}.wy-menu-vertical li.toctree-l2 button.toctree-expand{color:#a3a3a3}.wy-menu-vertical li.toctree-l3.current>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{background:#bdbdbd}.wy-menu-vertical li.toctree-l3 button.toctree-expand{color:#969696}.wy-menu-vertical li.current ul{display:block}.wy-menu-vertical li ul{margin-bottom:0;display:none}.wy-menu-vertical li ul li a{margin-bottom:0;color:#d9d9d9;font-weight:400}.wy-menu-vertical a{line-height:18px;padding:.4045em 1.618em;display:block;position:relative;font-size:90%;color:#d9d9d9}.wy-menu-vertical a:hover{background-color:#4e4a4a;cursor:pointer}.wy-menu-vertical a:hover button.toctree-expand{color:#d9d9d9}.wy-menu-vertical a:active{background-color:#2980b9;cursor:pointer;color:#fff}.wy-menu-vertical a:active button.toctree-expand{color:#fff}.wy-side-nav-search{display:block;width:300px;padding:.809em;margin-bottom:.809em;z-index:200;background-color:#2980b9;text-align:center;color:#fcfcfc}.wy-side-nav-search input[type=text]{width:100%;border-radius:50px;padding:6px 12px;border-color:#2472a4}.wy-side-nav-search img{display:block;margin:auto auto .809em;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-side-nav-search .wy-dropdown>a,.wy-side-nav-search>a{color:#fcfcfc;font-size:100%;font-weight:700;display:inline-block;padding:4px 6px;margin-bottom:.809em;max-width:100%}.wy-side-nav-search .wy-dropdown>a:hover,.wy-side-nav-search>a:hover{background:hsla(0,0%,100%,.1)}.wy-side-nav-search .wy-dropdown>a img.logo,.wy-side-nav-search>a img.logo{display:block;margin:0 auto;height:auto;width:auto;border-radius:0;max-width:100%;background:transparent}.wy-side-nav-search .wy-dropdown>a.icon img.logo,.wy-side-nav-search>a.icon img.logo{margin-top:.85em}.wy-side-nav-search>div.version{margin-top:-.4045em;margin-bottom:.809em;font-weight:400;color:hsla(0,0%,100%,.3)}.wy-nav .wy-menu-vertical header{color:#2980b9}.wy-nav .wy-menu-vertical a{color:#b3b3b3}.wy-nav .wy-menu-vertical a:hover{background-color:#2980b9;color:#fff}[data-menu-wrap]{-webkit-transition:all .2s ease-in;-moz-transition:all .2s ease-in;transition:all .2s ease-in;position:absolute;opacity:1;width:100%;opacity:0}[data-menu-wrap].move-center{left:0;right:auto;opacity:1}[data-menu-wrap].move-left{right:auto;left:-100%;opacity:0}[data-menu-wrap].move-right{right:-100%;left:auto;opacity:0}.wy-body-for-nav{background:#fcfcfc}.wy-grid-for-nav{position:absolute;width:100%;height:100%}.wy-nav-side{position:fixed;top:0;bottom:0;left:0;padding-bottom:2em;width:300px;overflow-x:hidden;overflow-y:hidden;min-height:100%;color:#9b9b9b;background:#343131;z-index:200}.wy-side-scroll{width:320px;position:relative;overflow-x:hidden;overflow-y:scroll;height:100%}.wy-nav-top{display:none;background:#2980b9;color:#fff;padding:.4045em .809em;position:relative;line-height:50px;text-align:center;font-size:100%;*zoom:1}.wy-nav-top:after,.wy-nav-top:before{display:table;content:""}.wy-nav-top:after{clear:both}.wy-nav-top a{color:#fff;font-weight:700}.wy-nav-top img{margin-right:12px;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-nav-top i{font-size:30px;float:left;cursor:pointer;padding-top:inherit}.wy-nav-content-wrap{margin-left:300px;background:#fcfcfc;min-height:100%}.wy-nav-content{padding:1.618em 3.236em;height:100%;max-width:800px;margin:auto}.wy-body-mask{position:fixed;width:100%;height:100%;background:rgba(0,0,0,.2);display:none;z-index:499}.wy-body-mask.on{display:block}footer{color:grey}footer p{margin-bottom:12px}.rst-content footer span.commit tt,footer span.commit .rst-content tt,footer span.commit code{padding:0;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:1em;background:none;border:none;color:grey}.rst-footer-buttons{*zoom:1}.rst-footer-buttons:after,.rst-footer-buttons:before{width:100%;display:table;content:""}.rst-footer-buttons:after{clear:both}.rst-breadcrumbs-buttons{margin-top:12px;*zoom:1}.rst-breadcrumbs-buttons:after,.rst-breadcrumbs-buttons:before{display:table;content:""}.rst-breadcrumbs-buttons:after{clear:both}#search-results .search li{margin-bottom:24px;border-bottom:1px solid #e1e4e5;padding-bottom:24px}#search-results .search li:first-child{border-top:1px solid #e1e4e5;padding-top:24px}#search-results .search li a{font-size:120%;margin-bottom:12px;display:inline-block}#search-results .context{color:grey;font-size:90%}.genindextable li>ul{margin-left:24px}@media screen and (max-width:768px){.wy-body-for-nav{background:#fcfcfc}.wy-nav-top{display:block}.wy-nav-side{left:-300px}.wy-nav-side.shift{width:85%;left:0}.wy-menu.wy-menu-vertical,.wy-side-nav-search,.wy-side-scroll{width:auto}.wy-nav-content-wrap{margin-left:0}.wy-nav-content-wrap .wy-nav-content{padding:1.618em}.wy-nav-content-wrap.shift{position:fixed;min-width:100%;left:85%;top:0;height:100%;overflow:hidden}}@media screen and (min-width:1100px){.wy-nav-content-wrap{background:rgba(0,0,0,.05)}.wy-nav-content{margin:0;background:#fcfcfc}}@media print{.rst-versions,.wy-nav-side,footer{display:none}.wy-nav-content-wrap{margin-left:0}}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60;*zoom:1}.rst-versions .rst-current-version:after,.rst-versions .rst-current-version:before{display:table;content:""}.rst-versions .rst-current-version:after{clear:both}.rst-content .code-block-caption .rst-versions .rst-current-version .headerlink,.rst-content .eqno .rst-versions .rst-current-version .headerlink,.rst-content .rst-versions .rst-current-version .admonition-title,.rst-content code.download .rst-versions .rst-current-version span:first-child,.rst-content dl dt .rst-versions .rst-current-version .headerlink,.rst-content h1 .rst-versions .rst-current-version .headerlink,.rst-content h2 .rst-versions .rst-current-version .headerlink,.rst-content h3 .rst-versions .rst-current-version .headerlink,.rst-content h4 .rst-versions .rst-current-version .headerlink,.rst-content h5 .rst-versions .rst-current-version .headerlink,.rst-content h6 .rst-versions .rst-current-version .headerlink,.rst-content p .rst-versions .rst-current-version .headerlink,.rst-content table>caption .rst-versions .rst-current-version .headerlink,.rst-content tt.download .rst-versions .rst-current-version span:first-child,.rst-versions .rst-current-version .fa,.rst-versions .rst-current-version .icon,.rst-versions .rst-current-version .rst-content .admonition-title,.rst-versions .rst-current-version .rst-content .code-block-caption .headerlink,.rst-versions .rst-current-version .rst-content .eqno .headerlink,.rst-versions .rst-current-version .rst-content code.download span:first-child,.rst-versions .rst-current-version .rst-content dl dt .headerlink,.rst-versions .rst-current-version .rst-content h1 .headerlink,.rst-versions .rst-current-version .rst-content h2 .headerlink,.rst-versions .rst-current-version .rst-content h3 .headerlink,.rst-versions .rst-current-version .rst-content h4 .headerlink,.rst-versions .rst-current-version .rst-content h5 .headerlink,.rst-versions .rst-current-version .rst-content h6 .headerlink,.rst-versions .rst-current-version .rst-content p .headerlink,.rst-versions .rst-current-version .rst-content table>caption .headerlink,.rst-versions .rst-current-version .rst-content tt.download span:first-child,.rst-versions .rst-current-version .wy-menu-vertical li button.toctree-expand,.wy-menu-vertical li .rst-versions .rst-current-version button.toctree-expand{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}.rst-content .toctree-wrapper>p.caption,.rst-content h1,.rst-content h2,.rst-content h3,.rst-content h4,.rst-content h5,.rst-content h6{margin-bottom:24px}.rst-content img{max-width:100%;height:auto}.rst-content div.figure,.rst-content figure{margin-bottom:24px}.rst-content div.figure .caption-text,.rst-content figure .caption-text{font-style:italic}.rst-content div.figure p:last-child.caption,.rst-content figure p:last-child.caption{margin-bottom:0}.rst-content div.figure.align-center,.rst-content figure.align-center{text-align:center}.rst-content .section>a>img,.rst-content .section>img,.rst-content section>a>img,.rst-content section>img{margin-bottom:24px}.rst-content abbr[title]{text-decoration:none}.rst-content.style-external-links a.reference.external:after{font-family:FontAwesome;content:"\f08e";color:#b3b3b3;vertical-align:super;font-size:60%;margin:0 .2em}.rst-content blockquote{margin-left:24px;line-height:24px;margin-bottom:24px}.rst-content pre.literal-block{white-space:pre;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;display:block;overflow:auto}.rst-content div[class^=highlight],.rst-content pre.literal-block{border:1px solid #e1e4e5;overflow-x:auto;margin:1px 0 24px}.rst-content div[class^=highlight] div[class^=highlight],.rst-content pre.literal-block div[class^=highlight]{padding:0;border:none;margin:0}.rst-content div[class^=highlight] td.code{width:100%}.rst-content .linenodiv pre{border-right:1px solid #e6e9ea;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;user-select:none;pointer-events:none}.rst-content div[class^=highlight] pre{white-space:pre;margin:0;padding:12px;display:block;overflow:auto}.rst-content div[class^=highlight] pre .hll{display:block;margin:0 -12px;padding:0 12px}.rst-content .linenodiv pre,.rst-content div[class^=highlight] pre,.rst-content pre.literal-block{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:12px;line-height:1.4}.rst-content div.highlight .gp,.rst-content div.highlight span.linenos{user-select:none;pointer-events:none}.rst-content div.highlight span.linenos{display:inline-block;padding-left:0;padding-right:12px;margin-right:12px;border-right:1px solid #e6e9ea}.rst-content .code-block-caption{font-style:italic;font-size:85%;line-height:1;padding:1em 0;text-align:center}@media print{.rst-content .codeblock,.rst-content div[class^=highlight],.rst-content div[class^=highlight] pre{white-space:pre-wrap}}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning{clear:both}.rst-content .admonition-todo .last,.rst-content .admonition-todo>:last-child,.rst-content .admonition .last,.rst-content .admonition>:last-child,.rst-content .attention .last,.rst-content .attention>:last-child,.rst-content .caution .last,.rst-content .caution>:last-child,.rst-content .danger .last,.rst-content .danger>:last-child,.rst-content .error .last,.rst-content .error>:last-child,.rst-content .hint .last,.rst-content .hint>:last-child,.rst-content .important .last,.rst-content .important>:last-child,.rst-content .note .last,.rst-content .note>:last-child,.rst-content .seealso .last,.rst-content .seealso>:last-child,.rst-content .tip .last,.rst-content .tip>:last-child,.rst-content .warning .last,.rst-content .warning>:last-child{margin-bottom:0}.rst-content .admonition-title:before{margin-right:4px}.rst-content .admonition table{border-color:rgba(0,0,0,.1)}.rst-content .admonition table td,.rst-content .admonition table th{background:transparent!important;border-color:rgba(0,0,0,.1)!important}.rst-content .section ol.loweralpha,.rst-content .section ol.loweralpha>li,.rst-content .toctree-wrapper ol.loweralpha,.rst-content .toctree-wrapper ol.loweralpha>li,.rst-content section ol.loweralpha,.rst-content section ol.loweralpha>li{list-style:lower-alpha}.rst-content .section ol.upperalpha,.rst-content .section ol.upperalpha>li,.rst-content .toctree-wrapper ol.upperalpha,.rst-content .toctree-wrapper ol.upperalpha>li,.rst-content section ol.upperalpha,.rst-content section ol.upperalpha>li{list-style:upper-alpha}.rst-content .section ol li>*,.rst-content .section ul li>*,.rst-content .toctree-wrapper ol li>*,.rst-content .toctree-wrapper ul li>*,.rst-content section ol li>*,.rst-content section ul li>*{margin-top:12px;margin-bottom:12px}.rst-content .section ol li>:first-child,.rst-content .section ul li>:first-child,.rst-content .toctree-wrapper ol li>:first-child,.rst-content .toctree-wrapper ul li>:first-child,.rst-content section ol li>:first-child,.rst-content section ul li>:first-child{margin-top:0}.rst-content .section ol li>p,.rst-content .section ol li>p:last-child,.rst-content .section ul li>p,.rst-content .section ul li>p:last-child,.rst-content .toctree-wrapper ol li>p,.rst-content .toctree-wrapper ol li>p:last-child,.rst-content .toctree-wrapper ul li>p,.rst-content .toctree-wrapper ul li>p:last-child,.rst-content section ol li>p,.rst-content section ol li>p:last-child,.rst-content section ul li>p,.rst-content section ul li>p:last-child{margin-bottom:12px}.rst-content .section ol li>p:only-child,.rst-content .section ol li>p:only-child:last-child,.rst-content .section ul li>p:only-child,.rst-content .section ul li>p:only-child:last-child,.rst-content .toctree-wrapper ol li>p:only-child,.rst-content .toctree-wrapper ol li>p:only-child:last-child,.rst-content .toctree-wrapper ul li>p:only-child,.rst-content .toctree-wrapper ul li>p:only-child:last-child,.rst-content section ol li>p:only-child,.rst-content section ol li>p:only-child:last-child,.rst-content section ul li>p:only-child,.rst-content section ul li>p:only-child:last-child{margin-bottom:0}.rst-content .section ol li>ol,.rst-content .section ol li>ul,.rst-content .section ul li>ol,.rst-content .section ul li>ul,.rst-content .toctree-wrapper ol li>ol,.rst-content .toctree-wrapper ol li>ul,.rst-content .toctree-wrapper ul li>ol,.rst-content .toctree-wrapper ul li>ul,.rst-content section ol li>ol,.rst-content section ol li>ul,.rst-content section ul li>ol,.rst-content section ul li>ul{margin-bottom:12px}.rst-content .section ol.simple li>*,.rst-content .section ol.simple li ol,.rst-content .section ol.simple li ul,.rst-content .section ul.simple li>*,.rst-content .section ul.simple li ol,.rst-content .section ul.simple li ul,.rst-content .toctree-wrapper ol.simple li>*,.rst-content .toctree-wrapper ol.simple li ol,.rst-content .toctree-wrapper ol.simple li ul,.rst-content .toctree-wrapper ul.simple li>*,.rst-content .toctree-wrapper ul.simple li ol,.rst-content .toctree-wrapper ul.simple li ul,.rst-content section ol.simple li>*,.rst-content section ol.simple li ol,.rst-content section ol.simple li ul,.rst-content section ul.simple li>*,.rst-content section ul.simple li ol,.rst-content section ul.simple li ul{margin-top:0;margin-bottom:0}.rst-content .line-block{margin-left:0;margin-bottom:24px;line-height:24px}.rst-content .line-block .line-block{margin-left:24px;margin-bottom:0}.rst-content .topic-title{font-weight:700;margin-bottom:12px}.rst-content .toc-backref{color:#404040}.rst-content .align-right{float:right;margin:0 0 24px 24px}.rst-content .align-left{float:left;margin:0 24px 24px 0}.rst-content .align-center{margin:auto}.rst-content .align-center:not(table){display:block}.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink{opacity:0;font-size:14px;font-family:FontAwesome;margin-left:.5em}.rst-content .code-block-caption .headerlink:focus,.rst-content .code-block-caption:hover .headerlink,.rst-content .eqno .headerlink:focus,.rst-content .eqno:hover .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink:focus,.rst-content .toctree-wrapper>p.caption:hover .headerlink,.rst-content dl dt .headerlink:focus,.rst-content dl dt:hover .headerlink,.rst-content h1 .headerlink:focus,.rst-content h1:hover .headerlink,.rst-content h2 .headerlink:focus,.rst-content h2:hover .headerlink,.rst-content h3 .headerlink:focus,.rst-content h3:hover .headerlink,.rst-content h4 .headerlink:focus,.rst-content h4:hover .headerlink,.rst-content h5 .headerlink:focus,.rst-content h5:hover .headerlink,.rst-content h6 .headerlink:focus,.rst-content h6:hover .headerlink,.rst-content p.caption .headerlink:focus,.rst-content p.caption:hover .headerlink,.rst-content p .headerlink:focus,.rst-content p:hover .headerlink,.rst-content table>caption .headerlink:focus,.rst-content table>caption:hover .headerlink{opacity:1}.rst-content p a{overflow-wrap:anywhere}.rst-content .wy-table td p,.rst-content .wy-table td ul,.rst-content .wy-table th p,.rst-content .wy-table th ul,.rst-content table.docutils td p,.rst-content table.docutils td ul,.rst-content table.docutils th p,.rst-content table.docutils th ul,.rst-content table.field-list td p,.rst-content table.field-list td ul,.rst-content table.field-list th p,.rst-content table.field-list th ul{font-size:inherit}.rst-content .btn:focus{outline:2px solid}.rst-content table>caption .headerlink:after{font-size:12px}.rst-content .centered{text-align:center}.rst-content .sidebar{float:right;width:40%;display:block;margin:0 0 24px 24px;padding:24px;background:#f3f6f6;border:1px solid #e1e4e5}.rst-content .sidebar dl,.rst-content .sidebar p,.rst-content .sidebar ul{font-size:90%}.rst-content .sidebar .last,.rst-content .sidebar>:last-child{margin-bottom:0}.rst-content .sidebar .sidebar-title{display:block;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif;font-weight:700;background:#e1e4e5;padding:6px 12px;margin:-24px -24px 24px;font-size:100%}.rst-content .highlighted{background:#f1c40f;box-shadow:0 0 0 2px #f1c40f;display:inline;font-weight:700}.rst-content .citation-reference,.rst-content .footnote-reference{vertical-align:baseline;position:relative;top:-.4em;line-height:0;font-size:90%}.rst-content .citation-reference>span.fn-bracket,.rst-content .footnote-reference>span.fn-bracket{display:none}.rst-content .hlist{width:100%}.rst-content dl dt span.classifier:before{content:" : "}.rst-content dl dt span.classifier-delimiter{display:none!important}html.writer-html4 .rst-content table.docutils.citation,html.writer-html4 .rst-content table.docutils.footnote{background:none;border:none}html.writer-html4 .rst-content table.docutils.citation td,html.writer-html4 .rst-content table.docutils.citation tr,html.writer-html4 .rst-content table.docutils.footnote td,html.writer-html4 .rst-content table.docutils.footnote tr{border:none;background-color:transparent!important;white-space:normal}html.writer-html4 .rst-content table.docutils.citation td.label,html.writer-html4 .rst-content table.docutils.footnote td.label{padding-left:0;padding-right:0;vertical-align:top}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{display:grid;grid-template-columns:auto minmax(80%,95%)}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{display:inline-grid;grid-template-columns:max-content auto}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{display:grid;grid-template-columns:auto auto minmax(.65rem,auto) minmax(40%,95%)}html.writer-html5 .rst-content aside.citation>span.label,html.writer-html5 .rst-content aside.footnote>span.label,html.writer-html5 .rst-content div.citation>span.label{grid-column-start:1;grid-column-end:2}html.writer-html5 .rst-content aside.citation>span.backrefs,html.writer-html5 .rst-content aside.footnote>span.backrefs,html.writer-html5 .rst-content div.citation>span.backrefs{grid-column-start:2;grid-column-end:3;grid-row-start:1;grid-row-end:3}html.writer-html5 .rst-content aside.citation>p,html.writer-html5 .rst-content aside.footnote>p,html.writer-html5 .rst-content div.citation>p{grid-column-start:4;grid-column-end:5}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{margin-bottom:24px}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{padding-left:1rem}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dd,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dd,html.writer-html5 .rst-content dl.footnote>dt{margin-bottom:0}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{font-size:.9rem}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.footnote>dt{margin:0 .5rem .5rem 0;line-height:1.2rem;word-break:break-all;font-weight:400}html.writer-html5 .rst-content dl.citation>dt>span.brackets:before,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:before{content:"["}html.writer-html5 .rst-content dl.citation>dt>span.brackets:after,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:after{content:"]"}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a{word-break:keep-all}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a:not(:first-child):before,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.footnote>dd{margin:0 0 .5rem;line-height:1.2rem}html.writer-html5 .rst-content dl.citation>dd p,html.writer-html5 .rst-content dl.footnote>dd p{font-size:.9rem}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{padding-left:1rem;padding-right:1rem;font-size:.9rem;line-height:1.2rem}html.writer-html5 .rst-content aside.citation p,html.writer-html5 .rst-content aside.footnote p,html.writer-html5 .rst-content div.citation p{font-size:.9rem;line-height:1.2rem;margin-bottom:12px}html.writer-html5 .rst-content aside.citation span.backrefs,html.writer-html5 .rst-content aside.footnote span.backrefs,html.writer-html5 .rst-content div.citation span.backrefs{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content aside.citation span.backrefs>a,html.writer-html5 .rst-content aside.footnote span.backrefs>a,html.writer-html5 .rst-content div.citation span.backrefs>a{word-break:keep-all}html.writer-html5 .rst-content aside.citation span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content aside.footnote span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content div.citation span.backrefs>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content aside.citation span.label,html.writer-html5 .rst-content aside.footnote span.label,html.writer-html5 .rst-content div.citation span.label{line-height:1.2rem}html.writer-html5 .rst-content aside.citation-list,html.writer-html5 .rst-content aside.footnote-list,html.writer-html5 .rst-content div.citation-list{margin-bottom:24px}html.writer-html5 .rst-content dl.option-list kbd{font-size:.9rem}.rst-content table.docutils.footnote,html.writer-html4 .rst-content table.docutils.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content aside.footnote-list aside.footnote,html.writer-html5 .rst-content div.citation-list>div.citation,html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{color:grey}.rst-content table.docutils.footnote code,.rst-content table.docutils.footnote tt,html.writer-html4 .rst-content table.docutils.citation code,html.writer-html4 .rst-content table.docutils.citation tt,html.writer-html5 .rst-content aside.footnote-list aside.footnote code,html.writer-html5 .rst-content aside.footnote-list aside.footnote tt,html.writer-html5 .rst-content aside.footnote code,html.writer-html5 .rst-content aside.footnote tt,html.writer-html5 .rst-content div.citation-list>div.citation code,html.writer-html5 .rst-content div.citation-list>div.citation tt,html.writer-html5 .rst-content dl.citation code,html.writer-html5 .rst-content dl.citation tt,html.writer-html5 .rst-content dl.footnote code,html.writer-html5 .rst-content dl.footnote tt{color:#555}.rst-content .wy-table-responsive.citation,.rst-content .wy-table-responsive.footnote{margin-bottom:0}.rst-content .wy-table-responsive.citation+:not(.citation),.rst-content .wy-table-responsive.footnote+:not(.footnote){margin-top:24px}.rst-content .wy-table-responsive.citation:last-child,.rst-content .wy-table-responsive.footnote:last-child{margin-bottom:24px}.rst-content table.docutils th{border-color:#e1e4e5}html.writer-html5 .rst-content table.docutils th{border:1px solid #e1e4e5}html.writer-html5 .rst-content table.docutils td>p,html.writer-html5 .rst-content table.docutils th>p{line-height:1rem;margin-bottom:0;font-size:.9rem}.rst-content table.docutils td .last,.rst-content table.docutils td .last>:last-child{margin-bottom:0}.rst-content table.field-list,.rst-content table.field-list td{border:none}.rst-content table.field-list td p{line-height:inherit}.rst-content table.field-list td>strong{display:inline-block}.rst-content table.field-list .field-name{padding-right:10px;text-align:left;white-space:nowrap}.rst-content table.field-list .field-body{text-align:left}.rst-content code,.rst-content tt{color:#000;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;padding:2px 5px}.rst-content code big,.rst-content code em,.rst-content tt big,.rst-content tt em{font-size:100%!important;line-height:normal}.rst-content code.literal,.rst-content tt.literal{color:#e74c3c;white-space:normal}.rst-content code.xref,.rst-content tt.xref,a .rst-content code,a .rst-content tt{font-weight:700;color:#404040;overflow-wrap:normal}.rst-content kbd,.rst-content pre,.rst-content samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace}.rst-content a code,.rst-content a tt{color:#2980b9}.rst-content dl{margin-bottom:24px}.rst-content dl dt{font-weight:700;margin-bottom:12px}.rst-content dl ol,.rst-content dl p,.rst-content dl table,.rst-content dl ul{margin-bottom:12px}.rst-content dl dd{margin:0 0 12px 24px;line-height:24px}.rst-content dl dd>ol:last-child,.rst-content dl dd>p:last-child,.rst-content dl dd>table:last-child,.rst-content dl dd>ul:last-child{margin-bottom:0}html.writer-html4 .rst-content dl:not(.docutils),html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple){margin-bottom:24px}html.writer-html4 .rst-content dl:not(.docutils)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{display:table;margin:6px 0;font-size:90%;line-height:normal;background:#e7f2fa;color:#2980b9;border-top:3px solid #6ab0de;padding:6px;position:relative}html.writer-html4 .rst-content dl:not(.docutils)>dt:before,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:before{color:#6ab0de}html.writer-html4 .rst-content dl:not(.docutils)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{margin-bottom:6px;border:none;border-left:3px solid #ccc;background:#f0f0f0;color:#555}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils)>dt:first-child,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:first-child{margin-top:0}html.writer-html4 .rst-content dl:not(.docutils) code.descclassname,html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descclassname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{background-color:transparent;border:none;padding:0;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .optional,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .optional{display:inline-block;padding:0 4px;color:#000;font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .property,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .property{display:inline-block;padding-right:8px;max-width:100%}html.writer-html4 .rst-content dl:not(.docutils) .k,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .k{font-style:italic}html.writer-html4 .rst-content dl:not(.docutils) .descclassname,html.writer-html4 .rst-content dl:not(.docutils) .descname,html.writer-html4 .rst-content dl:not(.docutils) .sig-name,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .sig-name{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#000}.rst-content .viewcode-back,.rst-content .viewcode-link{display:inline-block;color:#27ae60;font-size:80%;padding-left:24px}.rst-content .viewcode-back{display:block;float:right}.rst-content p.rubric{margin-bottom:12px;font-weight:700}.rst-content code.download,.rst-content tt.download{background:inherit;padding:inherit;font-weight:400;font-family:inherit;font-size:inherit;color:inherit;border:inherit;white-space:inherit}.rst-content code.download span:first-child,.rst-content tt.download span:first-child{-webkit-font-smoothing:subpixel-antialiased}.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{margin-right:4px}.rst-content .guilabel,.rst-content .menuselection{font-size:80%;font-weight:700;border-radius:4px;padding:2.4px 6px;margin:auto 2px}.rst-content .guilabel,.rst-content .menuselection{border:1px solid #7fbbe3;background:#e7f2fa}.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>.kbd,.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>kbd{color:inherit;font-size:80%;background-color:#fff;border:1px solid #a6a6a6;border-radius:4px;box-shadow:0 2px grey;padding:2.4px 6px;margin:auto 0}.rst-content .versionmodified{font-style:italic}@media screen and (max-width:480px){.rst-content .sidebar{width:100%}}span[id*=MathJax-Span]{color:#404040}.math{text-align:center}@font-face{font-family:Lato;src:url(fonts/lato-normal.woff2?bd03a2cc277bbbc338d464e679fe9942) format("woff2"),url(fonts/lato-normal.woff?27bd77b9162d388cb8d4c4217c7c5e2a) format("woff");font-weight:400;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold.woff2?cccb897485813c7c256901dbca54ecf2) format("woff2"),url(fonts/lato-bold.woff?d878b6c29b10beca227e9eef4246111b) format("woff");font-weight:700;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold-italic.woff2?0b6bb6725576b072c5d0b02ecdd1900d) format("woff2"),url(fonts/lato-bold-italic.woff?9c7e4e9eb485b4a121c760e61bc3707c) format("woff");font-weight:700;font-style:italic;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-normal-italic.woff2?4eb103b4d12be57cb1d040ed5e162e9d) format("woff2"),url(fonts/lato-normal-italic.woff?f28f2d6482446544ef1ea1ccc6dd5892) format("woff");font-weight:400;font-style:italic;font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:400;src:url(fonts/Roboto-Slab-Regular.woff2?7abf5b8d04d26a2cafea937019bca958) format("woff2"),url(fonts/Roboto-Slab-Regular.woff?c1be9284088d487c5e3ff0a10a92e58c) format("woff");font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:700;src:url(fonts/Roboto-Slab-Bold.woff2?9984f4a9bda09be08e83f2506954adbe) format("woff2"),url(fonts/Roboto-Slab-Bold.woff?bed5564a116b05148e3b3bea6fb1162a) format("woff");font-display:block} \ No newline at end of file diff --git a/_static/doctools.js b/_static/doctools.js new file mode 100644 index 0000000..d06a71d --- /dev/null +++ b/_static/doctools.js @@ -0,0 +1,156 @@ +/* + * doctools.js + * ~~~~~~~~~~~ + * + * Base JavaScript utilities for all Sphinx HTML documentation. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +const BLACKLISTED_KEY_CONTROL_ELEMENTS = new Set([ + "TEXTAREA", + "INPUT", + "SELECT", + "BUTTON", +]); + +const _ready = (callback) => { + if (document.readyState !== "loading") { + callback(); + } else { + document.addEventListener("DOMContentLoaded", callback); + } +}; + +/** + * Small JavaScript module for the documentation. + */ +const Documentation = { + init: () => { + Documentation.initDomainIndexTable(); + Documentation.initOnKeyListeners(); + }, + + /** + * i18n support + */ + TRANSLATIONS: {}, + PLURAL_EXPR: (n) => (n === 1 ? 0 : 1), + LOCALE: "unknown", + + // gettext and ngettext don't access this so that the functions + // can safely bound to a different name (_ = Documentation.gettext) + gettext: (string) => { + const translated = Documentation.TRANSLATIONS[string]; + switch (typeof translated) { + case "undefined": + return string; // no translation + case "string": + return translated; // translation exists + default: + return translated[0]; // (singular, plural) translation tuple exists + } + }, + + ngettext: (singular, plural, n) => { + const translated = Documentation.TRANSLATIONS[singular]; + if (typeof translated !== "undefined") + return translated[Documentation.PLURAL_EXPR(n)]; + return n === 1 ? singular : plural; + }, + + addTranslations: (catalog) => { + Object.assign(Documentation.TRANSLATIONS, catalog.messages); + Documentation.PLURAL_EXPR = new Function( + "n", + `return (${catalog.plural_expr})` + ); + Documentation.LOCALE = catalog.locale; + }, + + /** + * helper function to focus on search bar + */ + focusSearchBar: () => { + document.querySelectorAll("input[name=q]")[0]?.focus(); + }, + + /** + * Initialise the domain index toggle buttons + */ + initDomainIndexTable: () => { + const toggler = (el) => { + const idNumber = el.id.substr(7); + const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`); + if (el.src.substr(-9) === "minus.png") { + el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`; + toggledRows.forEach((el) => (el.style.display = "none")); + } else { + el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`; + toggledRows.forEach((el) => (el.style.display = "")); + } + }; + + const togglerElements = document.querySelectorAll("img.toggler"); + togglerElements.forEach((el) => + el.addEventListener("click", (event) => toggler(event.currentTarget)) + ); + togglerElements.forEach((el) => (el.style.display = "")); + if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler); + }, + + initOnKeyListeners: () => { + // only install a listener if it is really needed + if ( + !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && + !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS + ) + return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.altKey || event.ctrlKey || event.metaKey) return; + + if (!event.shiftKey) { + switch (event.key) { + case "ArrowLeft": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const prevLink = document.querySelector('link[rel="prev"]'); + if (prevLink && prevLink.href) { + window.location.href = prevLink.href; + event.preventDefault(); + } + break; + case "ArrowRight": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const nextLink = document.querySelector('link[rel="next"]'); + if (nextLink && nextLink.href) { + window.location.href = nextLink.href; + event.preventDefault(); + } + break; + } + } + + // some keyboard layouts may need Shift to get / + switch (event.key) { + case "/": + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; + Documentation.focusSearchBar(); + event.preventDefault(); + } + }); + }, +}; + +// quick alias for translations +const _ = Documentation.gettext; + +_ready(Documentation.init); diff --git a/_static/documentation_options.js b/_static/documentation_options.js new file mode 100644 index 0000000..529239f --- /dev/null +++ b/_static/documentation_options.js @@ -0,0 +1,13 @@ +const DOCUMENTATION_OPTIONS = { + VERSION: '1.0', + LANGUAGE: 'en', + COLLAPSE_INDEX: false, + BUILDER: 'html', + FILE_SUFFIX: '.html', + LINK_SUFFIX: '.html', + HAS_SOURCE: true, + SOURCELINK_SUFFIX: '.txt', + NAVIGATION_WITH_KEYS: false, + SHOW_SEARCH_SUMMARY: true, + ENABLE_SEARCH_SHORTCUTS: true, +}; \ No newline at end of file diff --git a/_static/file.png b/_static/file.png new file mode 100644 index 0000000..a858a41 Binary files /dev/null and b/_static/file.png differ diff --git a/_static/jquery.js b/_static/jquery.js new file mode 100644 index 0000000..c4c6022 --- /dev/null +++ b/_static/jquery.js @@ -0,0 +1,2 @@ +/*! jQuery v3.6.0 | (c) OpenJS Foundation and other contributors | jquery.org/license */ +!function(e,t){"use strict";"object"==typeof module&&"object"==typeof module.exports?module.exports=e.document?t(e,!0):function(e){if(!e.document)throw new Error("jQuery requires a window with a document");return t(e)}:t(e)}("undefined"!=typeof window?window:this,function(C,e){"use strict";var t=[],r=Object.getPrototypeOf,s=t.slice,g=t.flat?function(e){return t.flat.call(e)}:function(e){return t.concat.apply([],e)},u=t.push,i=t.indexOf,n={},o=n.toString,v=n.hasOwnProperty,a=v.toString,l=a.call(Object),y={},m=function(e){return"function"==typeof e&&"number"!=typeof e.nodeType&&"function"!=typeof e.item},x=function(e){return null!=e&&e===e.window},E=C.document,c={type:!0,src:!0,nonce:!0,noModule:!0};function b(e,t,n){var r,i,o=(n=n||E).createElement("script");if(o.text=e,t)for(r in c)(i=t[r]||t.getAttribute&&t.getAttribute(r))&&o.setAttribute(r,i);n.head.appendChild(o).parentNode.removeChild(o)}function w(e){return null==e?e+"":"object"==typeof e||"function"==typeof e?n[o.call(e)]||"object":typeof e}var f="3.6.0",S=function(e,t){return new S.fn.init(e,t)};function p(e){var t=!!e&&"length"in e&&e.length,n=w(e);return!m(e)&&!x(e)&&("array"===n||0===t||"number"==typeof t&&0+~]|"+M+")"+M+"*"),U=new RegExp(M+"|>"),X=new RegExp(F),V=new RegExp("^"+I+"$"),G={ID:new RegExp("^#("+I+")"),CLASS:new RegExp("^\\.("+I+")"),TAG:new RegExp("^("+I+"|[*])"),ATTR:new RegExp("^"+W),PSEUDO:new RegExp("^"+F),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+M+"*(even|odd|(([+-]|)(\\d*)n|)"+M+"*(?:([+-]|)"+M+"*(\\d+)|))"+M+"*\\)|)","i"),bool:new RegExp("^(?:"+R+")$","i"),needsContext:new RegExp("^"+M+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+M+"*((?:-\\d)?\\d*)"+M+"*\\)|)(?=[^-]|$)","i")},Y=/HTML$/i,Q=/^(?:input|select|textarea|button)$/i,J=/^h\d$/i,K=/^[^{]+\{\s*\[native \w/,Z=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,ee=/[+~]/,te=new RegExp("\\\\[\\da-fA-F]{1,6}"+M+"?|\\\\([^\\r\\n\\f])","g"),ne=function(e,t){var n="0x"+e.slice(1)-65536;return t||(n<0?String.fromCharCode(n+65536):String.fromCharCode(n>>10|55296,1023&n|56320))},re=/([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,ie=function(e,t){return t?"\0"===e?"\ufffd":e.slice(0,-1)+"\\"+e.charCodeAt(e.length-1).toString(16)+" ":"\\"+e},oe=function(){T()},ae=be(function(e){return!0===e.disabled&&"fieldset"===e.nodeName.toLowerCase()},{dir:"parentNode",next:"legend"});try{H.apply(t=O.call(p.childNodes),p.childNodes),t[p.childNodes.length].nodeType}catch(e){H={apply:t.length?function(e,t){L.apply(e,O.call(t))}:function(e,t){var n=e.length,r=0;while(e[n++]=t[r++]);e.length=n-1}}}function se(t,e,n,r){var i,o,a,s,u,l,c,f=e&&e.ownerDocument,p=e?e.nodeType:9;if(n=n||[],"string"!=typeof t||!t||1!==p&&9!==p&&11!==p)return n;if(!r&&(T(e),e=e||C,E)){if(11!==p&&(u=Z.exec(t)))if(i=u[1]){if(9===p){if(!(a=e.getElementById(i)))return n;if(a.id===i)return n.push(a),n}else if(f&&(a=f.getElementById(i))&&y(e,a)&&a.id===i)return n.push(a),n}else{if(u[2])return H.apply(n,e.getElementsByTagName(t)),n;if((i=u[3])&&d.getElementsByClassName&&e.getElementsByClassName)return H.apply(n,e.getElementsByClassName(i)),n}if(d.qsa&&!N[t+" "]&&(!v||!v.test(t))&&(1!==p||"object"!==e.nodeName.toLowerCase())){if(c=t,f=e,1===p&&(U.test(t)||z.test(t))){(f=ee.test(t)&&ye(e.parentNode)||e)===e&&d.scope||((s=e.getAttribute("id"))?s=s.replace(re,ie):e.setAttribute("id",s=S)),o=(l=h(t)).length;while(o--)l[o]=(s?"#"+s:":scope")+" "+xe(l[o]);c=l.join(",")}try{return H.apply(n,f.querySelectorAll(c)),n}catch(e){N(t,!0)}finally{s===S&&e.removeAttribute("id")}}}return g(t.replace($,"$1"),e,n,r)}function ue(){var r=[];return function e(t,n){return r.push(t+" ")>b.cacheLength&&delete e[r.shift()],e[t+" "]=n}}function le(e){return e[S]=!0,e}function ce(e){var t=C.createElement("fieldset");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function fe(e,t){var n=e.split("|"),r=n.length;while(r--)b.attrHandle[n[r]]=t}function pe(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(r)return r;if(n)while(n=n.nextSibling)if(n===t)return-1;return e?1:-1}function de(t){return function(e){return"input"===e.nodeName.toLowerCase()&&e.type===t}}function he(n){return function(e){var t=e.nodeName.toLowerCase();return("input"===t||"button"===t)&&e.type===n}}function ge(t){return function(e){return"form"in e?e.parentNode&&!1===e.disabled?"label"in e?"label"in e.parentNode?e.parentNode.disabled===t:e.disabled===t:e.isDisabled===t||e.isDisabled!==!t&&ae(e)===t:e.disabled===t:"label"in e&&e.disabled===t}}function ve(a){return le(function(o){return o=+o,le(function(e,t){var n,r=a([],e.length,o),i=r.length;while(i--)e[n=r[i]]&&(e[n]=!(t[n]=e[n]))})})}function ye(e){return e&&"undefined"!=typeof e.getElementsByTagName&&e}for(e in d=se.support={},i=se.isXML=function(e){var t=e&&e.namespaceURI,n=e&&(e.ownerDocument||e).documentElement;return!Y.test(t||n&&n.nodeName||"HTML")},T=se.setDocument=function(e){var t,n,r=e?e.ownerDocument||e:p;return r!=C&&9===r.nodeType&&r.documentElement&&(a=(C=r).documentElement,E=!i(C),p!=C&&(n=C.defaultView)&&n.top!==n&&(n.addEventListener?n.addEventListener("unload",oe,!1):n.attachEvent&&n.attachEvent("onunload",oe)),d.scope=ce(function(e){return a.appendChild(e).appendChild(C.createElement("div")),"undefined"!=typeof e.querySelectorAll&&!e.querySelectorAll(":scope fieldset div").length}),d.attributes=ce(function(e){return e.className="i",!e.getAttribute("className")}),d.getElementsByTagName=ce(function(e){return e.appendChild(C.createComment("")),!e.getElementsByTagName("*").length}),d.getElementsByClassName=K.test(C.getElementsByClassName),d.getById=ce(function(e){return a.appendChild(e).id=S,!C.getElementsByName||!C.getElementsByName(S).length}),d.getById?(b.filter.ID=function(e){var t=e.replace(te,ne);return function(e){return e.getAttribute("id")===t}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n=t.getElementById(e);return n?[n]:[]}}):(b.filter.ID=function(e){var n=e.replace(te,ne);return function(e){var t="undefined"!=typeof e.getAttributeNode&&e.getAttributeNode("id");return t&&t.value===n}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n,r,i,o=t.getElementById(e);if(o){if((n=o.getAttributeNode("id"))&&n.value===e)return[o];i=t.getElementsByName(e),r=0;while(o=i[r++])if((n=o.getAttributeNode("id"))&&n.value===e)return[o]}return[]}}),b.find.TAG=d.getElementsByTagName?function(e,t){return"undefined"!=typeof t.getElementsByTagName?t.getElementsByTagName(e):d.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if("*"===e){while(n=o[i++])1===n.nodeType&&r.push(n);return r}return o},b.find.CLASS=d.getElementsByClassName&&function(e,t){if("undefined"!=typeof t.getElementsByClassName&&E)return t.getElementsByClassName(e)},s=[],v=[],(d.qsa=K.test(C.querySelectorAll))&&(ce(function(e){var t;a.appendChild(e).innerHTML="",e.querySelectorAll("[msallowcapture^='']").length&&v.push("[*^$]="+M+"*(?:''|\"\")"),e.querySelectorAll("[selected]").length||v.push("\\["+M+"*(?:value|"+R+")"),e.querySelectorAll("[id~="+S+"-]").length||v.push("~="),(t=C.createElement("input")).setAttribute("name",""),e.appendChild(t),e.querySelectorAll("[name='']").length||v.push("\\["+M+"*name"+M+"*="+M+"*(?:''|\"\")"),e.querySelectorAll(":checked").length||v.push(":checked"),e.querySelectorAll("a#"+S+"+*").length||v.push(".#.+[+~]"),e.querySelectorAll("\\\f"),v.push("[\\r\\n\\f]")}),ce(function(e){e.innerHTML="";var t=C.createElement("input");t.setAttribute("type","hidden"),e.appendChild(t).setAttribute("name","D"),e.querySelectorAll("[name=d]").length&&v.push("name"+M+"*[*^$|!~]?="),2!==e.querySelectorAll(":enabled").length&&v.push(":enabled",":disabled"),a.appendChild(e).disabled=!0,2!==e.querySelectorAll(":disabled").length&&v.push(":enabled",":disabled"),e.querySelectorAll("*,:x"),v.push(",.*:")})),(d.matchesSelector=K.test(c=a.matches||a.webkitMatchesSelector||a.mozMatchesSelector||a.oMatchesSelector||a.msMatchesSelector))&&ce(function(e){d.disconnectedMatch=c.call(e,"*"),c.call(e,"[s!='']:x"),s.push("!=",F)}),v=v.length&&new RegExp(v.join("|")),s=s.length&&new RegExp(s.join("|")),t=K.test(a.compareDocumentPosition),y=t||K.test(a.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,r=t&&t.parentNode;return e===r||!(!r||1!==r.nodeType||!(n.contains?n.contains(r):e.compareDocumentPosition&&16&e.compareDocumentPosition(r)))}:function(e,t){if(t)while(t=t.parentNode)if(t===e)return!0;return!1},j=t?function(e,t){if(e===t)return l=!0,0;var n=!e.compareDocumentPosition-!t.compareDocumentPosition;return n||(1&(n=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!d.sortDetached&&t.compareDocumentPosition(e)===n?e==C||e.ownerDocument==p&&y(p,e)?-1:t==C||t.ownerDocument==p&&y(p,t)?1:u?P(u,e)-P(u,t):0:4&n?-1:1)}:function(e,t){if(e===t)return l=!0,0;var n,r=0,i=e.parentNode,o=t.parentNode,a=[e],s=[t];if(!i||!o)return e==C?-1:t==C?1:i?-1:o?1:u?P(u,e)-P(u,t):0;if(i===o)return pe(e,t);n=e;while(n=n.parentNode)a.unshift(n);n=t;while(n=n.parentNode)s.unshift(n);while(a[r]===s[r])r++;return r?pe(a[r],s[r]):a[r]==p?-1:s[r]==p?1:0}),C},se.matches=function(e,t){return se(e,null,null,t)},se.matchesSelector=function(e,t){if(T(e),d.matchesSelector&&E&&!N[t+" "]&&(!s||!s.test(t))&&(!v||!v.test(t)))try{var n=c.call(e,t);if(n||d.disconnectedMatch||e.document&&11!==e.document.nodeType)return n}catch(e){N(t,!0)}return 0":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(te,ne),e[3]=(e[3]||e[4]||e[5]||"").replace(te,ne),"~="===e[2]&&(e[3]=" "+e[3]+" "),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),"nth"===e[1].slice(0,3)?(e[3]||se.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*("even"===e[3]||"odd"===e[3])),e[5]=+(e[7]+e[8]||"odd"===e[3])):e[3]&&se.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return G.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||"":n&&X.test(n)&&(t=h(n,!0))&&(t=n.indexOf(")",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(te,ne).toLowerCase();return"*"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=m[e+" "];return t||(t=new RegExp("(^|"+M+")"+e+"("+M+"|$)"))&&m(e,function(e){return t.test("string"==typeof e.className&&e.className||"undefined"!=typeof e.getAttribute&&e.getAttribute("class")||"")})},ATTR:function(n,r,i){return function(e){var t=se.attr(e,n);return null==t?"!="===r:!r||(t+="","="===r?t===i:"!="===r?t!==i:"^="===r?i&&0===t.indexOf(i):"*="===r?i&&-1:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i;function j(e,n,r){return m(n)?S.grep(e,function(e,t){return!!n.call(e,t,e)!==r}):n.nodeType?S.grep(e,function(e){return e===n!==r}):"string"!=typeof n?S.grep(e,function(e){return-1)[^>]*|#([\w-]+))$/;(S.fn.init=function(e,t,n){var r,i;if(!e)return this;if(n=n||D,"string"==typeof e){if(!(r="<"===e[0]&&">"===e[e.length-1]&&3<=e.length?[null,e,null]:q.exec(e))||!r[1]&&t)return!t||t.jquery?(t||n).find(e):this.constructor(t).find(e);if(r[1]){if(t=t instanceof S?t[0]:t,S.merge(this,S.parseHTML(r[1],t&&t.nodeType?t.ownerDocument||t:E,!0)),N.test(r[1])&&S.isPlainObject(t))for(r in t)m(this[r])?this[r](t[r]):this.attr(r,t[r]);return this}return(i=E.getElementById(r[2]))&&(this[0]=i,this.length=1),this}return e.nodeType?(this[0]=e,this.length=1,this):m(e)?void 0!==n.ready?n.ready(e):e(S):S.makeArray(e,this)}).prototype=S.fn,D=S(E);var L=/^(?:parents|prev(?:Until|All))/,H={children:!0,contents:!0,next:!0,prev:!0};function O(e,t){while((e=e[t])&&1!==e.nodeType);return e}S.fn.extend({has:function(e){var t=S(e,this),n=t.length;return this.filter(function(){for(var e=0;e\x20\t\r\n\f]*)/i,he=/^$|^module$|\/(?:java|ecma)script/i;ce=E.createDocumentFragment().appendChild(E.createElement("div")),(fe=E.createElement("input")).setAttribute("type","radio"),fe.setAttribute("checked","checked"),fe.setAttribute("name","t"),ce.appendChild(fe),y.checkClone=ce.cloneNode(!0).cloneNode(!0).lastChild.checked,ce.innerHTML="",y.noCloneChecked=!!ce.cloneNode(!0).lastChild.defaultValue,ce.innerHTML="",y.option=!!ce.lastChild;var ge={thead:[1,"","
"],col:[2,"","
"],tr:[2,"","
"],td:[3,"","
"],_default:[0,"",""]};function ve(e,t){var n;return n="undefined"!=typeof e.getElementsByTagName?e.getElementsByTagName(t||"*"):"undefined"!=typeof e.querySelectorAll?e.querySelectorAll(t||"*"):[],void 0===t||t&&A(e,t)?S.merge([e],n):n}function ye(e,t){for(var n=0,r=e.length;n",""]);var me=/<|&#?\w+;/;function xe(e,t,n,r,i){for(var o,a,s,u,l,c,f=t.createDocumentFragment(),p=[],d=0,h=e.length;d\s*$/g;function je(e,t){return A(e,"table")&&A(11!==t.nodeType?t:t.firstChild,"tr")&&S(e).children("tbody")[0]||e}function De(e){return e.type=(null!==e.getAttribute("type"))+"/"+e.type,e}function qe(e){return"true/"===(e.type||"").slice(0,5)?e.type=e.type.slice(5):e.removeAttribute("type"),e}function Le(e,t){var n,r,i,o,a,s;if(1===t.nodeType){if(Y.hasData(e)&&(s=Y.get(e).events))for(i in Y.remove(t,"handle events"),s)for(n=0,r=s[i].length;n").attr(n.scriptAttrs||{}).prop({charset:n.scriptCharset,src:n.url}).on("load error",i=function(e){r.remove(),i=null,e&&t("error"===e.type?404:200,e.type)}),E.head.appendChild(r[0])},abort:function(){i&&i()}}});var _t,zt=[],Ut=/(=)\?(?=&|$)|\?\?/;S.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var e=zt.pop()||S.expando+"_"+wt.guid++;return this[e]=!0,e}}),S.ajaxPrefilter("json jsonp",function(e,t,n){var r,i,o,a=!1!==e.jsonp&&(Ut.test(e.url)?"url":"string"==typeof e.data&&0===(e.contentType||"").indexOf("application/x-www-form-urlencoded")&&Ut.test(e.data)&&"data");if(a||"jsonp"===e.dataTypes[0])return r=e.jsonpCallback=m(e.jsonpCallback)?e.jsonpCallback():e.jsonpCallback,a?e[a]=e[a].replace(Ut,"$1"+r):!1!==e.jsonp&&(e.url+=(Tt.test(e.url)?"&":"?")+e.jsonp+"="+r),e.converters["script json"]=function(){return o||S.error(r+" was not called"),o[0]},e.dataTypes[0]="json",i=C[r],C[r]=function(){o=arguments},n.always(function(){void 0===i?S(C).removeProp(r):C[r]=i,e[r]&&(e.jsonpCallback=t.jsonpCallback,zt.push(r)),o&&m(i)&&i(o[0]),o=i=void 0}),"script"}),y.createHTMLDocument=((_t=E.implementation.createHTMLDocument("").body).innerHTML="
",2===_t.childNodes.length),S.parseHTML=function(e,t,n){return"string"!=typeof e?[]:("boolean"==typeof t&&(n=t,t=!1),t||(y.createHTMLDocument?((r=(t=E.implementation.createHTMLDocument("")).createElement("base")).href=E.location.href,t.head.appendChild(r)):t=E),o=!n&&[],(i=N.exec(e))?[t.createElement(i[1])]:(i=xe([e],t,o),o&&o.length&&S(o).remove(),S.merge([],i.childNodes)));var r,i,o},S.fn.load=function(e,t,n){var r,i,o,a=this,s=e.indexOf(" ");return-1").append(S.parseHTML(e)).find(r):e)}).always(n&&function(e,t){a.each(function(){n.apply(this,o||[e.responseText,t,e])})}),this},S.expr.pseudos.animated=function(t){return S.grep(S.timers,function(e){return t===e.elem}).length},S.offset={setOffset:function(e,t,n){var r,i,o,a,s,u,l=S.css(e,"position"),c=S(e),f={};"static"===l&&(e.style.position="relative"),s=c.offset(),o=S.css(e,"top"),u=S.css(e,"left"),("absolute"===l||"fixed"===l)&&-1<(o+u).indexOf("auto")?(a=(r=c.position()).top,i=r.left):(a=parseFloat(o)||0,i=parseFloat(u)||0),m(t)&&(t=t.call(e,n,S.extend({},s))),null!=t.top&&(f.top=t.top-s.top+a),null!=t.left&&(f.left=t.left-s.left+i),"using"in t?t.using.call(e,f):c.css(f)}},S.fn.extend({offset:function(t){if(arguments.length)return void 0===t?this:this.each(function(e){S.offset.setOffset(this,t,e)});var e,n,r=this[0];return r?r.getClientRects().length?(e=r.getBoundingClientRect(),n=r.ownerDocument.defaultView,{top:e.top+n.pageYOffset,left:e.left+n.pageXOffset}):{top:0,left:0}:void 0},position:function(){if(this[0]){var e,t,n,r=this[0],i={top:0,left:0};if("fixed"===S.css(r,"position"))t=r.getBoundingClientRect();else{t=this.offset(),n=r.ownerDocument,e=r.offsetParent||n.documentElement;while(e&&(e===n.body||e===n.documentElement)&&"static"===S.css(e,"position"))e=e.parentNode;e&&e!==r&&1===e.nodeType&&((i=S(e).offset()).top+=S.css(e,"borderTopWidth",!0),i.left+=S.css(e,"borderLeftWidth",!0))}return{top:t.top-i.top-S.css(r,"marginTop",!0),left:t.left-i.left-S.css(r,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var e=this.offsetParent;while(e&&"static"===S.css(e,"position"))e=e.offsetParent;return e||re})}}),S.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(t,i){var o="pageYOffset"===i;S.fn[t]=function(e){return $(this,function(e,t,n){var r;if(x(e)?r=e:9===e.nodeType&&(r=e.defaultView),void 0===n)return r?r[i]:e[t];r?r.scrollTo(o?r.pageXOffset:n,o?n:r.pageYOffset):e[t]=n},t,e,arguments.length)}}),S.each(["top","left"],function(e,n){S.cssHooks[n]=Fe(y.pixelPosition,function(e,t){if(t)return t=We(e,n),Pe.test(t)?S(e).position()[n]+"px":t})}),S.each({Height:"height",Width:"width"},function(a,s){S.each({padding:"inner"+a,content:s,"":"outer"+a},function(r,o){S.fn[o]=function(e,t){var n=arguments.length&&(r||"boolean"!=typeof e),i=r||(!0===e||!0===t?"margin":"border");return $(this,function(e,t,n){var r;return x(e)?0===o.indexOf("outer")?e["inner"+a]:e.document.documentElement["client"+a]:9===e.nodeType?(r=e.documentElement,Math.max(e.body["scroll"+a],r["scroll"+a],e.body["offset"+a],r["offset"+a],r["client"+a])):void 0===n?S.css(e,t,i):S.style(e,t,n,i)},s,n?e:void 0,n)}})}),S.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(e,t){S.fn[t]=function(e){return this.on(t,e)}}),S.fn.extend({bind:function(e,t,n){return this.on(e,null,t,n)},unbind:function(e,t){return this.off(e,null,t)},delegate:function(e,t,n,r){return this.on(t,e,n,r)},undelegate:function(e,t,n){return 1===arguments.length?this.off(e,"**"):this.off(t,e||"**",n)},hover:function(e,t){return this.mouseenter(e).mouseleave(t||e)}}),S.each("blur focus focusin focusout resize scroll click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup contextmenu".split(" "),function(e,n){S.fn[n]=function(e,t){return 0",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=y.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=y.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),y.elements=c+" "+a,j(b)}function f(a){var b=x[a[v]];return b||(b={},w++,a[v]=w,x[w]=b),b}function g(a,c,d){if(c||(c=b),q)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():u.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||t.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),q)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return y.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(y,b.frag)}function j(a){a||(a=b);var d=f(a);return!y.shivCSS||p||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),q||i(a,d),a}function k(a){for(var b,c=a.getElementsByTagName("*"),e=c.length,f=RegExp("^(?:"+d().join("|")+")$","i"),g=[];e--;)b=c[e],f.test(b.nodeName)&&g.push(b.applyElement(l(b)));return g}function l(a){for(var b,c=a.attributes,d=c.length,e=a.ownerDocument.createElement(A+":"+a.nodeName);d--;)b=c[d],b.specified&&e.setAttribute(b.nodeName,b.nodeValue);return e.style.cssText=a.style.cssText,e}function m(a){for(var b,c=a.split("{"),e=c.length,f=RegExp("(^|[\\s,>+~])("+d().join("|")+")(?=[[\\s,>+~#.:]|$)","gi"),g="$1"+A+"\\:$2";e--;)b=c[e]=c[e].split("}"),b[b.length-1]=b[b.length-1].replace(f,g),c[e]=b.join("}");return c.join("{")}function n(a){for(var b=a.length;b--;)a[b].removeNode()}function o(a){function b(){clearTimeout(g._removeSheetTimer),d&&d.removeNode(!0),d=null}var d,e,g=f(a),h=a.namespaces,i=a.parentWindow;return!B||a.printShived?a:("undefined"==typeof h[A]&&h.add(A),i.attachEvent("onbeforeprint",function(){b();for(var f,g,h,i=a.styleSheets,j=[],l=i.length,n=Array(l);l--;)n[l]=i[l];for(;h=n.pop();)if(!h.disabled&&z.test(h.media)){try{f=h.imports,g=f.length}catch(o){g=0}for(l=0;g>l;l++)n.push(f[l]);try{j.push(h.cssText)}catch(o){}}j=m(j.reverse().join("")),e=k(a),d=c(a,j)}),i.attachEvent("onafterprint",function(){n(e),clearTimeout(g._removeSheetTimer),g._removeSheetTimer=setTimeout(b,500)}),a.printShived=!0,a)}var p,q,r="3.7.3",s=a.html5||{},t=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,u=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,v="_html5shiv",w=0,x={};!function(){try{var a=b.createElement("a");a.innerHTML="",p="hidden"in a,q=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){p=!0,q=!0}}();var y={elements:s.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:r,shivCSS:s.shivCSS!==!1,supportsUnknownElements:q,shivMethods:s.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=y,j(b);var z=/^$|\b(?:all|print)\b/,A="html5shiv",B=!q&&function(){var c=b.documentElement;return!("undefined"==typeof b.namespaces||"undefined"==typeof b.parentWindow||"undefined"==typeof c.applyElement||"undefined"==typeof c.removeNode||"undefined"==typeof a.attachEvent)}();y.type+=" print",y.shivPrint=o,o(b),"object"==typeof module&&module.exports&&(module.exports=y)}("undefined"!=typeof window?window:this,document); \ No newline at end of file diff --git a/_static/js/html5shiv.min.js b/_static/js/html5shiv.min.js new file mode 100644 index 0000000..cd1c674 --- /dev/null +++ b/_static/js/html5shiv.min.js @@ -0,0 +1,4 @@ +/** +* @preserve HTML5 Shiv 3.7.3 | @afarkas @jdalton @jon_neal @rem | MIT/GPL2 Licensed +*/ +!function(a,b){function c(a,b){var c=a.createElement("p"),d=a.getElementsByTagName("head")[0]||a.documentElement;return c.innerHTML="x",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=t.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=t.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),t.elements=c+" "+a,j(b)}function f(a){var b=s[a[q]];return b||(b={},r++,a[q]=r,s[r]=b),b}function g(a,c,d){if(c||(c=b),l)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():p.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||o.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),l)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return t.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(t,b.frag)}function j(a){a||(a=b);var d=f(a);return!t.shivCSS||k||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),l||i(a,d),a}var k,l,m="3.7.3-pre",n=a.html5||{},o=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,p=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,q="_html5shiv",r=0,s={};!function(){try{var a=b.createElement("a");a.innerHTML="",k="hidden"in a,l=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){k=!0,l=!0}}();var t={elements:n.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:m,shivCSS:n.shivCSS!==!1,supportsUnknownElements:l,shivMethods:n.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=t,j(b),"object"==typeof module&&module.exports&&(module.exports=t)}("undefined"!=typeof window?window:this,document); \ No newline at end of file diff --git a/_static/js/theme.js b/_static/js/theme.js new file mode 100644 index 0000000..1fddb6e --- /dev/null +++ b/_static/js/theme.js @@ -0,0 +1 @@ +!function(n){var e={};function t(i){if(e[i])return e[i].exports;var o=e[i]={i:i,l:!1,exports:{}};return n[i].call(o.exports,o,o.exports,t),o.l=!0,o.exports}t.m=n,t.c=e,t.d=function(n,e,i){t.o(n,e)||Object.defineProperty(n,e,{enumerable:!0,get:i})},t.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},t.t=function(n,e){if(1&e&&(n=t(n)),8&e)return n;if(4&e&&"object"==typeof n&&n&&n.__esModule)return n;var i=Object.create(null);if(t.r(i),Object.defineProperty(i,"default",{enumerable:!0,value:n}),2&e&&"string"!=typeof n)for(var o in n)t.d(i,o,function(e){return n[e]}.bind(null,o));return i},t.n=function(n){var e=n&&n.__esModule?function(){return n.default}:function(){return n};return t.d(e,"a",e),e},t.o=function(n,e){return Object.prototype.hasOwnProperty.call(n,e)},t.p="",t(t.s=0)}([function(n,e,t){t(1),n.exports=t(3)},function(n,e,t){(function(){var e="undefined"!=typeof window?window.jQuery:t(2);n.exports.ThemeNav={navBar:null,win:null,winScroll:!1,winResize:!1,linkScroll:!1,winPosition:0,winHeight:null,docHeight:null,isRunning:!1,enable:function(n){var t=this;void 0===n&&(n=!0),t.isRunning||(t.isRunning=!0,e((function(e){t.init(e),t.reset(),t.win.on("hashchange",t.reset),n&&t.win.on("scroll",(function(){t.linkScroll||t.winScroll||(t.winScroll=!0,requestAnimationFrame((function(){t.onScroll()})))})),t.win.on("resize",(function(){t.winResize||(t.winResize=!0,requestAnimationFrame((function(){t.onResize()})))})),t.onResize()})))},enableSticky:function(){this.enable(!0)},init:function(n){n(document);var e=this;this.navBar=n("div.wy-side-scroll:first"),this.win=n(window),n(document).on("click","[data-toggle='wy-nav-top']",(function(){n("[data-toggle='wy-nav-shift']").toggleClass("shift"),n("[data-toggle='rst-versions']").toggleClass("shift")})).on("click",".wy-menu-vertical .current ul li a",(function(){var t=n(this);n("[data-toggle='wy-nav-shift']").removeClass("shift"),n("[data-toggle='rst-versions']").toggleClass("shift"),e.toggleCurrent(t),e.hashChange()})).on("click","[data-toggle='rst-current-version']",(function(){n("[data-toggle='rst-versions']").toggleClass("shift-up")})),n("table.docutils:not(.field-list,.footnote,.citation)").wrap("
"),n("table.docutils.footnote").wrap("
"),n("table.docutils.citation").wrap("
"),n(".wy-menu-vertical ul").not(".simple").siblings("a").each((function(){var t=n(this);expand=n(''),expand.on("click",(function(n){return e.toggleCurrent(t),n.stopPropagation(),!1})),t.prepend(expand)}))},reset:function(){var n=encodeURI(window.location.hash)||"#";try{var e=$(".wy-menu-vertical"),t=e.find('[href="'+n+'"]');if(0===t.length){var i=$('.document [id="'+n.substring(1)+'"]').closest("div.section");0===(t=e.find('[href="#'+i.attr("id")+'"]')).length&&(t=e.find('[href="#"]'))}if(t.length>0){$(".wy-menu-vertical .current").removeClass("current").attr("aria-expanded","false"),t.addClass("current").attr("aria-expanded","true"),t.closest("li.toctree-l1").parent().addClass("current").attr("aria-expanded","true");for(let n=1;n<=10;n++)t.closest("li.toctree-l"+n).addClass("current").attr("aria-expanded","true");t[0].scrollIntoView()}}catch(n){console.log("Error expanding nav for anchor",n)}},onScroll:function(){this.winScroll=!1;var n=this.win.scrollTop(),e=n+this.winHeight,t=this.navBar.scrollTop()+(n-this.winPosition);n<0||e>this.docHeight||(this.navBar.scrollTop(t),this.winPosition=n)},onResize:function(){this.winResize=!1,this.winHeight=this.win.height(),this.docHeight=$(document).height()},hashChange:function(){this.linkScroll=!0,this.win.one("hashchange",(function(){this.linkScroll=!1}))},toggleCurrent:function(n){var e=n.closest("li");e.siblings("li.current").removeClass("current").attr("aria-expanded","false"),e.siblings().find("li.current").removeClass("current").attr("aria-expanded","false");var t=e.find("> ul li");t.length&&(t.removeClass("current").attr("aria-expanded","false"),e.toggleClass("current").attr("aria-expanded",(function(n,e){return"true"==e?"false":"true"})))}},"undefined"!=typeof window&&(window.SphinxRtdTheme={Navigation:n.exports.ThemeNav,StickyNav:n.exports.ThemeNav}),function(){for(var n=0,e=["ms","moz","webkit","o"],t=0;t0 + var meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$"; // [C]VC[V] is m=1 + var mgr1 = "^(" + C + ")?" + V + C + V + C; // [C]VCVC... is m>1 + var s_v = "^(" + C + ")?" + v; // vowel in stem + + this.stemWord = function (w) { + var stem; + var suffix; + var firstch; + var origword = w; + + if (w.length < 3) + return w; + + var re; + var re2; + var re3; + var re4; + + firstch = w.substr(0,1); + if (firstch == "y") + w = firstch.toUpperCase() + w.substr(1); + + // Step 1a + re = /^(.+?)(ss|i)es$/; + re2 = /^(.+?)([^s])s$/; + + if (re.test(w)) + w = w.replace(re,"$1$2"); + else if (re2.test(w)) + w = w.replace(re2,"$1$2"); + + // Step 1b + re = /^(.+?)eed$/; + re2 = /^(.+?)(ed|ing)$/; + if (re.test(w)) { + var fp = re.exec(w); + re = new RegExp(mgr0); + if (re.test(fp[1])) { + re = /.$/; + w = w.replace(re,""); + } + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1]; + re2 = new RegExp(s_v); + if (re2.test(stem)) { + w = stem; + re2 = /(at|bl|iz)$/; + re3 = new RegExp("([^aeiouylsz])\\1$"); + re4 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re2.test(w)) + w = w + "e"; + else if (re3.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + else if (re4.test(w)) + w = w + "e"; + } + } + + // Step 1c + re = /^(.+?)y$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(s_v); + if (re.test(stem)) + w = stem + "i"; + } + + // Step 2 + re = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step2list[suffix]; + } + + // Step 3 + re = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step3list[suffix]; + } + + // Step 4 + re = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/; + re2 = /^(.+?)(s|t)(ion)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + if (re.test(stem)) + w = stem; + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1] + fp[2]; + re2 = new RegExp(mgr1); + if (re2.test(stem)) + w = stem; + } + + // Step 5 + re = /^(.+?)e$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + re2 = new RegExp(meq1); + re3 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re.test(stem) || (re2.test(stem) && !(re3.test(stem)))) + w = stem; + } + re = /ll$/; + re2 = new RegExp(mgr1); + if (re.test(w) && re2.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + + // and turn initial Y back to y + if (firstch == "y") + w = firstch.toLowerCase() + w.substr(1); + return w; + } +} + diff --git a/_static/minus.png b/_static/minus.png new file mode 100644 index 0000000..d96755f Binary files /dev/null and b/_static/minus.png differ diff --git a/_static/plus.png b/_static/plus.png new file mode 100644 index 0000000..7107cec Binary files /dev/null and b/_static/plus.png differ diff --git a/_static/pygments.css b/_static/pygments.css new file mode 100644 index 0000000..84ab303 --- /dev/null +++ b/_static/pygments.css @@ -0,0 +1,75 @@ +pre { line-height: 125%; } +td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +.highlight .hll { background-color: #ffffcc } +.highlight { background: #f8f8f8; } +.highlight .c { color: #3D7B7B; font-style: italic } /* Comment */ +.highlight .err { border: 1px solid #FF0000 } /* Error */ +.highlight .k { color: #008000; font-weight: bold } /* Keyword */ +.highlight .o { color: #666666 } /* Operator */ +.highlight .ch { color: #3D7B7B; font-style: italic } /* Comment.Hashbang */ +.highlight .cm { color: #3D7B7B; font-style: italic } /* Comment.Multiline */ +.highlight .cp { color: #9C6500 } /* Comment.Preproc */ +.highlight .cpf { color: #3D7B7B; font-style: italic } /* Comment.PreprocFile */ +.highlight .c1 { color: #3D7B7B; font-style: italic } /* Comment.Single */ +.highlight .cs { color: #3D7B7B; font-style: italic } /* Comment.Special */ +.highlight .gd { color: #A00000 } /* Generic.Deleted */ +.highlight .ge { font-style: italic } /* Generic.Emph */ +.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */ +.highlight .gr { color: #E40000 } /* Generic.Error */ +.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */ +.highlight .gi { color: #008400 } /* Generic.Inserted */ +.highlight .go { color: #717171 } /* Generic.Output */ +.highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */ +.highlight .gs { font-weight: bold } /* Generic.Strong */ +.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */ +.highlight .gt { color: #0044DD } /* Generic.Traceback */ +.highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */ +.highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */ +.highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */ +.highlight .kp { color: #008000 } /* Keyword.Pseudo */ +.highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */ +.highlight .kt { color: #B00040 } /* Keyword.Type */ +.highlight .m { color: #666666 } /* Literal.Number */ +.highlight .s { color: #BA2121 } /* Literal.String */ +.highlight .na { color: #687822 } /* Name.Attribute */ +.highlight .nb { color: #008000 } /* Name.Builtin */ +.highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */ +.highlight .no { color: #880000 } /* Name.Constant */ +.highlight .nd { color: #AA22FF } /* Name.Decorator */ +.highlight .ni { color: #717171; font-weight: bold } /* Name.Entity */ +.highlight .ne { color: #CB3F38; font-weight: bold } /* Name.Exception */ +.highlight .nf { color: #0000FF } /* Name.Function */ +.highlight .nl { color: #767600 } /* Name.Label */ +.highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */ +.highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */ +.highlight .nv { color: #19177C } /* Name.Variable */ +.highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */ +.highlight .w { color: #bbbbbb } /* Text.Whitespace */ +.highlight .mb { color: #666666 } /* Literal.Number.Bin */ +.highlight .mf { color: #666666 } /* Literal.Number.Float */ +.highlight .mh { color: #666666 } /* Literal.Number.Hex */ +.highlight .mi { color: #666666 } /* Literal.Number.Integer */ +.highlight .mo { color: #666666 } /* Literal.Number.Oct */ +.highlight .sa { color: #BA2121 } /* Literal.String.Affix */ +.highlight .sb { color: #BA2121 } /* Literal.String.Backtick */ +.highlight .sc { color: #BA2121 } /* Literal.String.Char */ +.highlight .dl { color: #BA2121 } /* Literal.String.Delimiter */ +.highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */ +.highlight .s2 { color: #BA2121 } /* Literal.String.Double */ +.highlight .se { color: #AA5D1F; font-weight: bold } /* Literal.String.Escape */ +.highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */ +.highlight .si { color: #A45A77; font-weight: bold } /* Literal.String.Interpol */ +.highlight .sx { color: #008000 } /* Literal.String.Other */ +.highlight .sr { color: #A45A77 } /* Literal.String.Regex */ +.highlight .s1 { color: #BA2121 } /* Literal.String.Single */ +.highlight .ss { color: #19177C } /* Literal.String.Symbol */ +.highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */ +.highlight .fm { color: #0000FF } /* Name.Function.Magic */ +.highlight .vc { color: #19177C } /* Name.Variable.Class */ +.highlight .vg { color: #19177C } /* Name.Variable.Global */ +.highlight .vi { color: #19177C } /* Name.Variable.Instance */ +.highlight .vm { color: #19177C } /* Name.Variable.Magic */ +.highlight .il { color: #666666 } /* Literal.Number.Integer.Long */ \ No newline at end of file diff --git a/_static/searchtools.js b/_static/searchtools.js new file mode 100644 index 0000000..7918c3f --- /dev/null +++ b/_static/searchtools.js @@ -0,0 +1,574 @@ +/* + * searchtools.js + * ~~~~~~~~~~~~~~~~ + * + * Sphinx JavaScript utilities for the full-text search. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +/** + * Simple result scoring code. + */ +if (typeof Scorer === "undefined") { + var Scorer = { + // Implement the following function to further tweak the score for each result + // The function takes a result array [docname, title, anchor, descr, score, filename] + // and returns the new score. + /* + score: result => { + const [docname, title, anchor, descr, score, filename] = result + return score + }, + */ + + // query matches the full name of an object + objNameMatch: 11, + // or matches in the last dotted part of the object name + objPartialMatch: 6, + // Additive scores depending on the priority of the object + objPrio: { + 0: 15, // used to be importantResults + 1: 5, // used to be objectResults + 2: -5, // used to be unimportantResults + }, + // Used when the priority is not in the mapping. + objPrioDefault: 0, + + // query found in title + title: 15, + partialTitle: 7, + // query found in terms + term: 5, + partialTerm: 2, + }; +} + +const _removeChildren = (element) => { + while (element && element.lastChild) element.removeChild(element.lastChild); +}; + +/** + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#escaping + */ +const _escapeRegExp = (string) => + string.replace(/[.*+\-?^${}()|[\]\\]/g, "\\$&"); // $& means the whole matched string + +const _displayItem = (item, searchTerms, highlightTerms) => { + const docBuilder = DOCUMENTATION_OPTIONS.BUILDER; + const docFileSuffix = DOCUMENTATION_OPTIONS.FILE_SUFFIX; + const docLinkSuffix = DOCUMENTATION_OPTIONS.LINK_SUFFIX; + const showSearchSummary = DOCUMENTATION_OPTIONS.SHOW_SEARCH_SUMMARY; + const contentRoot = document.documentElement.dataset.content_root; + + const [docName, title, anchor, descr, score, _filename] = item; + + let listItem = document.createElement("li"); + let requestUrl; + let linkUrl; + if (docBuilder === "dirhtml") { + // dirhtml builder + let dirname = docName + "/"; + if (dirname.match(/\/index\/$/)) + dirname = dirname.substring(0, dirname.length - 6); + else if (dirname === "index/") dirname = ""; + requestUrl = contentRoot + dirname; + linkUrl = requestUrl; + } else { + // normal html builders + requestUrl = contentRoot + docName + docFileSuffix; + linkUrl = docName + docLinkSuffix; + } + let linkEl = listItem.appendChild(document.createElement("a")); + linkEl.href = linkUrl + anchor; + linkEl.dataset.score = score; + linkEl.innerHTML = title; + if (descr) { + listItem.appendChild(document.createElement("span")).innerHTML = + " (" + descr + ")"; + // highlight search terms in the description + if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js + highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); + } + else if (showSearchSummary) + fetch(requestUrl) + .then((responseData) => responseData.text()) + .then((data) => { + if (data) + listItem.appendChild( + Search.makeSearchSummary(data, searchTerms) + ); + // highlight search terms in the summary + if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js + highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); + }); + Search.output.appendChild(listItem); +}; +const _finishSearch = (resultCount) => { + Search.stopPulse(); + Search.title.innerText = _("Search Results"); + if (!resultCount) + Search.status.innerText = Documentation.gettext( + "Your search did not match any documents. Please make sure that all words are spelled correctly and that you've selected enough categories." + ); + else + Search.status.innerText = _( + `Search finished, found ${resultCount} page(s) matching the search query.` + ); +}; +const _displayNextItem = ( + results, + resultCount, + searchTerms, + highlightTerms, +) => { + // results left, load the summary and display it + // this is intended to be dynamic (don't sub resultsCount) + if (results.length) { + _displayItem(results.pop(), searchTerms, highlightTerms); + setTimeout( + () => _displayNextItem(results, resultCount, searchTerms, highlightTerms), + 5 + ); + } + // search finished, update title and status message + else _finishSearch(resultCount); +}; + +/** + * Default splitQuery function. Can be overridden in ``sphinx.search`` with a + * custom function per language. + * + * The regular expression works by splitting the string on consecutive characters + * that are not Unicode letters, numbers, underscores, or emoji characters. + * This is the same as ``\W+`` in Python, preserving the surrogate pair area. + */ +if (typeof splitQuery === "undefined") { + var splitQuery = (query) => query + .split(/[^\p{Letter}\p{Number}_\p{Emoji_Presentation}]+/gu) + .filter(term => term) // remove remaining empty strings +} + +/** + * Search Module + */ +const Search = { + _index: null, + _queued_query: null, + _pulse_status: -1, + + htmlToText: (htmlString) => { + const htmlElement = new DOMParser().parseFromString(htmlString, 'text/html'); + htmlElement.querySelectorAll(".headerlink").forEach((el) => { el.remove() }); + const docContent = htmlElement.querySelector('[role="main"]'); + if (docContent !== undefined) return docContent.textContent; + console.warn( + "Content block not found. Sphinx search tries to obtain it via '[role=main]'. Could you check your theme or template." + ); + return ""; + }, + + init: () => { + const query = new URLSearchParams(window.location.search).get("q"); + document + .querySelectorAll('input[name="q"]') + .forEach((el) => (el.value = query)); + if (query) Search.performSearch(query); + }, + + loadIndex: (url) => + (document.body.appendChild(document.createElement("script")).src = url), + + setIndex: (index) => { + Search._index = index; + if (Search._queued_query !== null) { + const query = Search._queued_query; + Search._queued_query = null; + Search.query(query); + } + }, + + hasIndex: () => Search._index !== null, + + deferQuery: (query) => (Search._queued_query = query), + + stopPulse: () => (Search._pulse_status = -1), + + startPulse: () => { + if (Search._pulse_status >= 0) return; + + const pulse = () => { + Search._pulse_status = (Search._pulse_status + 1) % 4; + Search.dots.innerText = ".".repeat(Search._pulse_status); + if (Search._pulse_status >= 0) window.setTimeout(pulse, 500); + }; + pulse(); + }, + + /** + * perform a search for something (or wait until index is loaded) + */ + performSearch: (query) => { + // create the required interface elements + const searchText = document.createElement("h2"); + searchText.textContent = _("Searching"); + const searchSummary = document.createElement("p"); + searchSummary.classList.add("search-summary"); + searchSummary.innerText = ""; + const searchList = document.createElement("ul"); + searchList.classList.add("search"); + + const out = document.getElementById("search-results"); + Search.title = out.appendChild(searchText); + Search.dots = Search.title.appendChild(document.createElement("span")); + Search.status = out.appendChild(searchSummary); + Search.output = out.appendChild(searchList); + + const searchProgress = document.getElementById("search-progress"); + // Some themes don't use the search progress node + if (searchProgress) { + searchProgress.innerText = _("Preparing search..."); + } + Search.startPulse(); + + // index already loaded, the browser was quick! + if (Search.hasIndex()) Search.query(query); + else Search.deferQuery(query); + }, + + /** + * execute search (requires search index to be loaded) + */ + query: (query) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + const allTitles = Search._index.alltitles; + const indexEntries = Search._index.indexentries; + + // stem the search terms and add them to the correct list + const stemmer = new Stemmer(); + const searchTerms = new Set(); + const excludedTerms = new Set(); + const highlightTerms = new Set(); + const objectTerms = new Set(splitQuery(query.toLowerCase().trim())); + splitQuery(query.trim()).forEach((queryTerm) => { + const queryTermLower = queryTerm.toLowerCase(); + + // maybe skip this "word" + // stopwords array is from language_data.js + if ( + stopwords.indexOf(queryTermLower) !== -1 || + queryTerm.match(/^\d+$/) + ) + return; + + // stem the word + let word = stemmer.stemWord(queryTermLower); + // select the correct list + if (word[0] === "-") excludedTerms.add(word.substr(1)); + else { + searchTerms.add(word); + highlightTerms.add(queryTermLower); + } + }); + + if (SPHINX_HIGHLIGHT_ENABLED) { // set in sphinx_highlight.js + localStorage.setItem("sphinx_highlight_terms", [...highlightTerms].join(" ")) + } + + // console.debug("SEARCH: searching for:"); + // console.info("required: ", [...searchTerms]); + // console.info("excluded: ", [...excludedTerms]); + + // array of [docname, title, anchor, descr, score, filename] + let results = []; + _removeChildren(document.getElementById("search-progress")); + + const queryLower = query.toLowerCase(); + for (const [title, foundTitles] of Object.entries(allTitles)) { + if (title.toLowerCase().includes(queryLower) && (queryLower.length >= title.length/2)) { + for (const [file, id] of foundTitles) { + let score = Math.round(100 * queryLower.length / title.length) + results.push([ + docNames[file], + titles[file] !== title ? `${titles[file]} > ${title}` : title, + id !== null ? "#" + id : "", + null, + score, + filenames[file], + ]); + } + } + } + + // search for explicit entries in index directives + for (const [entry, foundEntries] of Object.entries(indexEntries)) { + if (entry.includes(queryLower) && (queryLower.length >= entry.length/2)) { + for (const [file, id] of foundEntries) { + let score = Math.round(100 * queryLower.length / entry.length) + results.push([ + docNames[file], + titles[file], + id ? "#" + id : "", + null, + score, + filenames[file], + ]); + } + } + } + + // lookup as object + objectTerms.forEach((term) => + results.push(...Search.performObjectSearch(term, objectTerms)) + ); + + // lookup as search terms in fulltext + results.push(...Search.performTermsSearch(searchTerms, excludedTerms)); + + // let the scorer override scores with a custom scoring function + if (Scorer.score) results.forEach((item) => (item[4] = Scorer.score(item))); + + // now sort the results by score (in opposite order of appearance, since the + // display function below uses pop() to retrieve items) and then + // alphabetically + results.sort((a, b) => { + const leftScore = a[4]; + const rightScore = b[4]; + if (leftScore === rightScore) { + // same score: sort alphabetically + const leftTitle = a[1].toLowerCase(); + const rightTitle = b[1].toLowerCase(); + if (leftTitle === rightTitle) return 0; + return leftTitle > rightTitle ? -1 : 1; // inverted is intentional + } + return leftScore > rightScore ? 1 : -1; + }); + + // remove duplicate search results + // note the reversing of results, so that in the case of duplicates, the highest-scoring entry is kept + let seen = new Set(); + results = results.reverse().reduce((acc, result) => { + let resultStr = result.slice(0, 4).concat([result[5]]).map(v => String(v)).join(','); + if (!seen.has(resultStr)) { + acc.push(result); + seen.add(resultStr); + } + return acc; + }, []); + + results = results.reverse(); + + // for debugging + //Search.lastresults = results.slice(); // a copy + // console.info("search results:", Search.lastresults); + + // print the results + _displayNextItem(results, results.length, searchTerms, highlightTerms); + }, + + /** + * search for object names + */ + performObjectSearch: (object, objectTerms) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const objects = Search._index.objects; + const objNames = Search._index.objnames; + const titles = Search._index.titles; + + const results = []; + + const objectSearchCallback = (prefix, match) => { + const name = match[4] + const fullname = (prefix ? prefix + "." : "") + name; + const fullnameLower = fullname.toLowerCase(); + if (fullnameLower.indexOf(object) < 0) return; + + let score = 0; + const parts = fullnameLower.split("."); + + // check for different match types: exact matches of full name or + // "last name" (i.e. last dotted part) + if (fullnameLower === object || parts.slice(-1)[0] === object) + score += Scorer.objNameMatch; + else if (parts.slice(-1)[0].indexOf(object) > -1) + score += Scorer.objPartialMatch; // matches in last name + + const objName = objNames[match[1]][2]; + const title = titles[match[0]]; + + // If more than one term searched for, we require other words to be + // found in the name/title/description + const otherTerms = new Set(objectTerms); + otherTerms.delete(object); + if (otherTerms.size > 0) { + const haystack = `${prefix} ${name} ${objName} ${title}`.toLowerCase(); + if ( + [...otherTerms].some((otherTerm) => haystack.indexOf(otherTerm) < 0) + ) + return; + } + + let anchor = match[3]; + if (anchor === "") anchor = fullname; + else if (anchor === "-") anchor = objNames[match[1]][1] + "-" + fullname; + + const descr = objName + _(", in ") + title; + + // add custom score for some objects according to scorer + if (Scorer.objPrio.hasOwnProperty(match[2])) + score += Scorer.objPrio[match[2]]; + else score += Scorer.objPrioDefault; + + results.push([ + docNames[match[0]], + fullname, + "#" + anchor, + descr, + score, + filenames[match[0]], + ]); + }; + Object.keys(objects).forEach((prefix) => + objects[prefix].forEach((array) => + objectSearchCallback(prefix, array) + ) + ); + return results; + }, + + /** + * search for full-text terms in the index + */ + performTermsSearch: (searchTerms, excludedTerms) => { + // prepare search + const terms = Search._index.terms; + const titleTerms = Search._index.titleterms; + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + + const scoreMap = new Map(); + const fileMap = new Map(); + + // perform the search on the required terms + searchTerms.forEach((word) => { + const files = []; + const arr = [ + { files: terms[word], score: Scorer.term }, + { files: titleTerms[word], score: Scorer.title }, + ]; + // add support for partial matches + if (word.length > 2) { + const escapedWord = _escapeRegExp(word); + Object.keys(terms).forEach((term) => { + if (term.match(escapedWord) && !terms[word]) + arr.push({ files: terms[term], score: Scorer.partialTerm }); + }); + Object.keys(titleTerms).forEach((term) => { + if (term.match(escapedWord) && !titleTerms[word]) + arr.push({ files: titleTerms[word], score: Scorer.partialTitle }); + }); + } + + // no match but word was a required one + if (arr.every((record) => record.files === undefined)) return; + + // found search word in contents + arr.forEach((record) => { + if (record.files === undefined) return; + + let recordFiles = record.files; + if (recordFiles.length === undefined) recordFiles = [recordFiles]; + files.push(...recordFiles); + + // set score for the word in each file + recordFiles.forEach((file) => { + if (!scoreMap.has(file)) scoreMap.set(file, {}); + scoreMap.get(file)[word] = record.score; + }); + }); + + // create the mapping + files.forEach((file) => { + if (fileMap.has(file) && fileMap.get(file).indexOf(word) === -1) + fileMap.get(file).push(word); + else fileMap.set(file, [word]); + }); + }); + + // now check if the files don't contain excluded terms + const results = []; + for (const [file, wordList] of fileMap) { + // check if all requirements are matched + + // as search terms with length < 3 are discarded + const filteredTermCount = [...searchTerms].filter( + (term) => term.length > 2 + ).length; + if ( + wordList.length !== searchTerms.size && + wordList.length !== filteredTermCount + ) + continue; + + // ensure that none of the excluded terms is in the search result + if ( + [...excludedTerms].some( + (term) => + terms[term] === file || + titleTerms[term] === file || + (terms[term] || []).includes(file) || + (titleTerms[term] || []).includes(file) + ) + ) + break; + + // select one (max) score for the file. + const score = Math.max(...wordList.map((w) => scoreMap.get(file)[w])); + // add result to the result list + results.push([ + docNames[file], + titles[file], + "", + null, + score, + filenames[file], + ]); + } + return results; + }, + + /** + * helper function to return a node containing the + * search summary for a given text. keywords is a list + * of stemmed words. + */ + makeSearchSummary: (htmlText, keywords) => { + const text = Search.htmlToText(htmlText); + if (text === "") return null; + + const textLower = text.toLowerCase(); + const actualStartPosition = [...keywords] + .map((k) => textLower.indexOf(k.toLowerCase())) + .filter((i) => i > -1) + .slice(-1)[0]; + const startWithContext = Math.max(actualStartPosition - 120, 0); + + const top = startWithContext === 0 ? "" : "..."; + const tail = startWithContext + 240 < text.length ? "..." : ""; + + let summary = document.createElement("p"); + summary.classList.add("context"); + summary.textContent = top + text.substr(startWithContext, 240).trim() + tail; + + return summary; + }, +}; + +_ready(Search.init); diff --git a/_static/sphinx_highlight.js b/_static/sphinx_highlight.js new file mode 100644 index 0000000..8a96c69 --- /dev/null +++ b/_static/sphinx_highlight.js @@ -0,0 +1,154 @@ +/* Highlighting utilities for Sphinx HTML documentation. */ +"use strict"; + +const SPHINX_HIGHLIGHT_ENABLED = true + +/** + * highlight a given string on a node by wrapping it in + * span elements with the given class name. + */ +const _highlight = (node, addItems, text, className) => { + if (node.nodeType === Node.TEXT_NODE) { + const val = node.nodeValue; + const parent = node.parentNode; + const pos = val.toLowerCase().indexOf(text); + if ( + pos >= 0 && + !parent.classList.contains(className) && + !parent.classList.contains("nohighlight") + ) { + let span; + + const closestNode = parent.closest("body, svg, foreignObject"); + const isInSVG = closestNode && closestNode.matches("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.classList.add(className); + } + + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + const rest = document.createTextNode(val.substr(pos + text.length)); + parent.insertBefore( + span, + parent.insertBefore( + rest, + node.nextSibling + ) + ); + node.nodeValue = val.substr(0, pos); + /* There may be more occurrences of search term in this node. So call this + * function recursively on the remaining fragment. + */ + _highlight(rest, addItems, text, className); + + if (isInSVG) { + const rect = document.createElementNS( + "http://www.w3.org/2000/svg", + "rect" + ); + const bbox = parent.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute("class", className); + addItems.push({ parent: parent, target: rect }); + } + } + } else if (node.matches && !node.matches("button, select, textarea")) { + node.childNodes.forEach((el) => _highlight(el, addItems, text, className)); + } +}; +const _highlightText = (thisNode, text, className) => { + let addItems = []; + _highlight(thisNode, addItems, text, className); + addItems.forEach((obj) => + obj.parent.insertAdjacentElement("beforebegin", obj.target) + ); +}; + +/** + * Small JavaScript module for the documentation. + */ +const SphinxHighlight = { + + /** + * highlight the search words provided in localstorage in the text + */ + highlightSearchWords: () => { + if (!SPHINX_HIGHLIGHT_ENABLED) return; // bail if no highlight + + // get and clear terms from localstorage + const url = new URL(window.location); + const highlight = + localStorage.getItem("sphinx_highlight_terms") + || url.searchParams.get("highlight") + || ""; + localStorage.removeItem("sphinx_highlight_terms") + url.searchParams.delete("highlight"); + window.history.replaceState({}, "", url); + + // get individual terms from highlight string + const terms = highlight.toLowerCase().split(/\s+/).filter(x => x); + if (terms.length === 0) return; // nothing to do + + // There should never be more than one element matching "div.body" + const divBody = document.querySelectorAll("div.body"); + const body = divBody.length ? divBody[0] : document.querySelector("body"); + window.setTimeout(() => { + terms.forEach((term) => _highlightText(body, term, "highlighted")); + }, 10); + + const searchBox = document.getElementById("searchbox"); + if (searchBox === null) return; + searchBox.appendChild( + document + .createRange() + .createContextualFragment( + '" + ) + ); + }, + + /** + * helper function to hide the search marks again + */ + hideSearchWords: () => { + document + .querySelectorAll("#searchbox .highlight-link") + .forEach((el) => el.remove()); + document + .querySelectorAll("span.highlighted") + .forEach((el) => el.classList.remove("highlighted")); + localStorage.removeItem("sphinx_highlight_terms") + }, + + initEscapeListener: () => { + // only install a listener if it is really needed + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.shiftKey || event.altKey || event.ctrlKey || event.metaKey) return; + if (DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS && (event.key === "Escape")) { + SphinxHighlight.hideSearchWords(); + event.preventDefault(); + } + }); + }, +}; + +_ready(() => { + /* Do not call highlightSearchWords() when we are on the search page. + * It will highlight words from the *previous* search query. + */ + if (typeof Search === "undefined") SphinxHighlight.highlightSearchWords(); + SphinxHighlight.initEscapeListener(); +}); diff --git a/genindex.html b/genindex.html new file mode 100644 index 0000000..792838b --- /dev/null +++ b/genindex.html @@ -0,0 +1,417 @@ + + + + + + Index — simca 1.0 documentation + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + +

Index

+ +
+ A + | C + | E + | F + | G + | I + | L + | M + | O + | P + | R + | S + | U + | W + +
+

A

+ + +
+ +

C

+ + + +
+ +

E

+ + +
+ +

F

+ + + +
+ +

G

+ + + +
+ +

I

+ + + +
+ +

L

+ + + +
+ +

M

+ + + +
+ +

O

+ + +
+ +

P

+ + + +
+ +

R

+ + + +
+ +

S

+ + + +
+ +

U

+ + +
+ +

W

+ + + +
+ + + +
+
+
+ +
+ +
+

© Copyright 2023, Antoine Rouxel.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/getting_started.html b/getting_started.html new file mode 100644 index 0000000..8de6ec8 --- /dev/null +++ b/getting_started.html @@ -0,0 +1,178 @@ + + + + + + + Getting started — simca 1.0 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Getting started

+
+

Installation

+

To install simca, follow the steps below:

+
    +
  1. Clone the repository from GitLab:

  2. +
+
git clone git@gitlab.laas.fr:arouxel/simca.git
+cd simca
+
+
+
    +
  1. Create a dedicated Python environment using Miniconda. If you don’t have Miniconda installed, you can find the instructions here.

  2. +
+
# Create a new Python environment
+conda create -n simca-env python=3.9
+
+# Activate the environment
+conda activate simca-env
+
+
+
    +
  1. Install the necessary Python packages that simca relies on. These are listed in the requirements.txt file in the repository.

  2. +
+
# Install necessary Python packages with pip
+pip install -r requirements.txt
+
+
+
+
+

Usage

+
+

Download datasets

+
    +
  1. Download the standard datasets from this link, then unzip and paste the datasets folder in the root directory of SIMCA.

  2. +
+
+
+

Quick Start with GUI (option 1)

+
    +
  1. Start the application:

  2. +
+
# run the app
+python main.py
+
+
+
+
+

Quick Start with API (option 2)

+
    +
  1. Run the example script :

  2. +
+
# run the script
+python simple_script.py
+
+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/index.html b/index.html new file mode 100644 index 0000000..e8b1fa3 --- /dev/null +++ b/index.html @@ -0,0 +1,212 @@ + + + + + + + SIMCA : optical simulations for coded spectral imaging — simca 1.0 documentation + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • + View page source +
  • +
+
+
+
+
+ +
+

SIMCA : optical simulations for coded spectral imaging

+_images/SIMCA_logo-2-cropped.png +

SIMCA is a python-based tool designed to perform optical simulations of Coded Aperture Snapshot Spectral Imaging (CASSI) systems. +We provide a python package and a graphical user-interface developed in PyQt5.

+

It is built upon ray-tracing equations and interpolation methods to estimate the image formation process and generate realistic measurements of various cassi instruments.

+

Available system architectures are:

+
    +
  • Single-Disperser CASSI ([WJWB08])

  • +
  • Double-Disperser CASSI ([GJB+07])

  • +
+

Available propagation models are:

+
    +
  • Higher-Order from [ARW+13]

  • +
  • Ray-tracing (first implementation in [HLCM20], another paper will be submitted soon)

  • +
+

Available optical components and related characteristics are:

+
    +
  • Lens (params: focal length)

  • +
  • Prism (params: apex angle, glass type, orientation misalignments)

  • +
  • Grating (params: groove density, orientation misalignments)

  • +
+

More system architectures and optical components will be added in the future.

+
+
+

Main Features

+

SIMCA includes four main features:

+
    +
  • Scene Analysis (only with GUI): for analyzing multi- or hyper-spectral datasets. It includes vizualization of data slices, spectrum analysis, and dataset labeling.

  • +
  • Optical Design: for evaluating and comparing the performances of various optical systems.

  • +
  • Coded Aperture patterns Generation: for generating various patterns and corresponding filtering cubes.

  • +
  • Acquisition Coded Images: for simulating the acquisition process

  • +
+

For more detailed information about each feature and further instructions, please visit our Tutorial - Basics (with GUI) and Tutorial - Advanced (only script).

+ +
+
+

Indices and tables

+ +
+
+

License

+

SIMCA is licensed under the GNU General Public License.

+
+
+

Contact

+

For any questions or feedback, please contact us at arouxel@laas.fr

+
+
+

References

+
+
+[ARW+13] +

Henry Arguello, Hoover Rueda, Yuehao Wu, Dennis W. Prather, and Gonzalo R. Arce. Higher-order computational model for coded aperture spectral imaging. Applied Optics, 52(10):D12, mar 2013. doi:10.1364/ao.52.000d12.

+
+
+[GJB+07] +

M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz. Single-shot compressive spectral imaging with a dual-disperser architecture. Optics Express, 15(21):14013, oct 2007. doi:10.1364/oe.15.014013.

+
+
+[HLCM20] +

Elizabeth Hemsley, Simon Lacroix, Hervé Carfantan, and Antoine Monmayrant. Calibration of programmable spectral imager with dual disperser architecture. Optics Communications, 468:125767, aug 2020. doi:10.1016/j.optcom.2020.125767.

+
+
+[Rou22] +

Antoine Rouxel. Étude d'un imageur hyperspectral adaptatif dans un contexte d'observation de la terre. Theses, INSA de Toulouse, June 2022. URL: https://theses.hal.science/tel-03997931.

+
+
+[WJWB08] +

A. Wagadarikar, T. John, R. Willett, and D. Brady. Single disperser design for coded aperture snapshot spectral imaging. Applied Optics, 47(10):B44–B51, aug 2008. doi:10.1364/ao.47.000b44.

+
+
+
+
+ + +
+ + + + + + + + + + \ No newline at end of file diff --git a/modules.html b/modules.html new file mode 100644 index 0000000..140e859 --- /dev/null +++ b/modules.html @@ -0,0 +1,109 @@ + + + + + + + cassi_systems — simca 1.0 documentation + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

cassi_systems

+
+
+
+ + +
+
+
+ +
+ +
+

© Copyright 2023, Antoine Rouxel.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/objects.inv b/objects.inv new file mode 100644 index 0000000..cd8d976 Binary files /dev/null and b/objects.inv differ diff --git a/py-modindex.html b/py-modindex.html new file mode 100644 index 0000000..73ec44c --- /dev/null +++ b/py-modindex.html @@ -0,0 +1,153 @@ + + + + + + Python Module Index — simca 1.0 documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + +

Python Module Index

+ +
+ s +
+ + + + + + + + + + + + + + + + + + + + + + + + + +
 
+ s
+ simca +
    + simca.CassiSystem +
    + simca.functions_acquisition +
    + simca.functions_general_purpose +
    + simca.functions_patterns_generation +
    + simca.functions_scenes +
    + simca.OpticalModel +
+ + +
+
+
+ +
+ +
+

© Copyright 2023, Antoine Rouxel.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/search.html b/search.html new file mode 100644 index 0000000..6ae8620 --- /dev/null +++ b/search.html @@ -0,0 +1,123 @@ + + + + + + Search — simca 1.0 documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + + + +
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Antoine Rouxel.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + + + + + + \ No newline at end of file diff --git a/searchindex.js b/searchindex.js new file mode 100644 index 0000000..ae847e6 --- /dev/null +++ b/searchindex.js @@ -0,0 +1 @@ +Search.setIndex({"docnames": ["Tutorial_advanced", "Tutorial_with_GUI", "getting_started", "index", "modules", "simca"], "filenames": ["Tutorial_advanced.rst", "Tutorial_with_GUI.rst", "getting_started.rst", "index.rst", "modules.rst", "simca.rst"], "titles": ["Tutorial - Advanced (only script)", "Tutorial - Basics (with GUI)", "Getting started", "SIMCA : optical simulations for coded spectral imaging", "cassi_systems", "API Reference"], "terms": {"thi": [0, 1, 2, 5], "walk": 0, "you": [0, 1, 2, 5], "through": [0, 1, 5], "process": [0, 1, 3, 5], "run": [0, 2, 5], "simpl": 0, "us": [0, 1, 2, 5], "class": [0, 3], "from": [0, 1, 2, 3, 5], "simca": [0, 2, 5], "packag": [0, 2, 3, 5], "first": [0, 1, 3], "make": 0, "sure": 0, "import": 0, "necessari": [0, 2], "modul": [0, 1, 3], "load_yaml_config": [0, 5], "next": 0, "configur": [0, 5], "file": [0, 1, 2, 5], "config_dataset": 0, "config": [0, 5], "yml": 0, "config_system": 0, "cassi_system": 0, "config_pattern": [0, 5], "config_acquisit": [0, 5], "Then": 0, "set": [0, 5], "name": [0, 1, 5], "interest": 0, "dataset_nam": [0, 5], "indian_pin": 0, "system_config": [0, 5], "load_dataset": [0, 5], "directori": [0, 1, 2, 5], "generate_2d_pattern": [0, 5], "detector": [0, 1, 5], "plane": [0, 1, 5], "propagate_coded_aperture_grid": [0, 5], "generate_filtering_cub": [0, 5], "optic": [0, 5], "system": [0, 3, 5], "optical_model": 0, "generate_psf": [0, 5], "type": [0, 1, 3, 5], "gaussian": [0, 5], "radiu": [0, 5], "100": [0, 1], "case": [0, 5], "image_acquisit": [0, 5], "use_psf": [0, 5], "true": 0, "chunck_siz": [0, 5], "50": [0, 5], "final": 0, "save_acquisit": [0, 5], "And": 0, "": [0, 1], "ve": 0, "successfulli": 0, "an": [0, 5], "matplotlib": 0, "pyplot": 0, "plt": 0, "functions_general_purpos": [0, 5], "o": 0, "results_directori": 0, "data": [0, 1, 3, 5], "result": [0, 5], "lego_test_1": 0, "nb_of_acq": 0, "10": [0, 3], "generate_multiple_pattern": [0, 5], "generate_multiple_filtering_cub": [0, 5], "multiple_image_acquisit": [0, 5], "fals": [0, 5], "nb_of_filtering_cub": [0, 5], "up": 0, "result_directori": [0, 5], "makedir": 0, "exist_ok": 0, "save_config_fil": [0, 5], "save_data_in_hdf5": [0, 5], "interpolated_scen": 0, "panchro": 0, "wavelength": [0, 1, 5], "system_wavelength": 0, "list_of_compressed_measur": 0, "list_of_measur": 0, "list_of_filtering_cub": 0, "list_of_pattern": 0, "congratul": 0, "perform": [0, 1, 3, 5], "The": [1, 5], "ar": [1, 2, 3, 5], "includ": [1, 3], "applic": [1, 2], "These": [1, 2], "complet": 1, "independ": 1, "them": 1, "sequenti": 1, "i": [1, 3, 5], "recommend": 1, "usag": [1, 3], "onli": [1, 3, 5], "analyz": [1, 3], "multi": [1, 3], "hyper": [1, 3], "It": [1, 3, 5], "vizual": [1, 3], "spectrum": [1, 3, 5], "label": [1, 3, 5], "evalu": [1, 3, 5], "variou": [1, 3], "correspond": [1, 3, 5], "tab": 1, "characterist": [1, 3], "locat": 1, "left": 1, "side": 1, "path": [1, 5], "all": [1, 5], "store": [1, 5], "here": [1, 2], "attent": 1, "click": 1, "reload": 1, "chang": [1, 5], "combobox": 1, "avail": [1, 3], "select": 1, "dimens": [1, 5], "valu": [1, 5], "onc": [1, 5], "along": [1, 5], "x": [1, 5], "direct": [1, 5], "dispers": [1, 3, 5], "y": [1, 5], "perpendicular": 1, "number": [1, 5], "band": 1, "minimum": [1, 5], "usual": 1, "n": [1, 2, 5], "0": [1, 5], "maximum": [1, 5], "last": [1, 5], "By": [1, 5], "right": [1, 5], "one": [1, 5], "can": [1, 2, 5], "inspect": 1, "spatial": [1, 5], "content": [1, 5], "move": 1, "slider": 1, "choos": 1, "quick": 1, "info": 1, "studi": 1, "architectur": [1, 3, 5], "paramet": [1, 5], "defin": [1, 5], "thu": 1, "model": [1, 3, 5], "focal": [1, 3, 5], "len": [1, 3, 5], "f": [1, 5], "micromet": 1, "element": [1, 5], "prism": [1, 3, 5], "grate": [1, 3, 5], "when": 1, "apex": [1, 3, 5], "angl": [1, 3, 5], "degre": 1, "m": [1, 3, 5], "consid": 1, "order": [1, 3, 5], "diffract": [1, 5], "unit": [1, 5], "g": [1, 5], "line": [1, 5], "densiti": [1, 3, 5], "mm": [1, 5], "delta": 1, "alpha": [1, 5], "beta": 1, "center": [1, 5], "nm": [1, 5], "slm": 1, "mask": [1, 5], "rang": [1, 5], "boundari": 1, "For": [1, 3, 5], "each": [1, 3, 5], "point": [1, 5], "coordin": [1, 5], "onto": 1, "analys": 1, "object": [1, 5], "its": 1, "input": [1, 5], "605": 1, "given": [1, 5], "exampl": [1, 2], "differ": 1, "get": [1, 3, 5], "qualit": 1, "quantit": 1, "associ": 1, "depend": [1, 5], "chosen": 1, "slit": [1, 5], "column": [1, 5], "open": [1, 5], "gradient": 1, "posit": [1, 5], "rel": [1, 5], "between": [1, 5], "width": [1, 5], "30": 1, "random": [1, 5], "nois": [1, 5], "normal": 1, "law": 1, "blue": [1, 5], "boost": 1, "high": [1, 5], "frequenc": [1, 5], "custon": 1, "h5": [1, 5], "custom": [1, 5], "should": [1, 5], "contain": [1, 5], "crop": [1, 5], "fit": 1, "2d": [1, 5], "arrai": [1, 5], "repres": 1, "function": [1, 3], "functions_patterns_gener": [1, 5], "py": [1, 2], "cassisystem": [1, 5], "instanc": 1, "creat": [1, 2, 5], "project": 1, "sampl": [1, 5], "same": [1, 5], "section": 1, "equal": 1, "space": 1, "show": 1, "note": [1, 5], "interpol": [1, 3, 5], "accord": [1, 5], "now": [1, 5], "mode": 1, "singl": [1, 3, 5], "spread": 1, "psf": [1, 5], "ad": [1, 3], "more": [1, 3, 5], "realism": 1, "scene": [1, 3, 5], "convolv": [1, 5], "kernel": 1, "futur": [1, 3], "second": 1, "multipl": [1, 3, 5], "reinterpol": 1, "No": 1, "simpli": 1, "sum": 1, "To": 2, "follow": [2, 5], "step": [2, 5], "below": 2, "clone": 2, "repositori": 2, "gitlab": 2, "git": 2, "laa": [2, 3, 5], "fr": [2, 3, 5], "arouxel": [2, 3], "cd": 2, "dedic": 2, "python": [2, 3], "environ": 2, "miniconda": 2, "If": [2, 5], "don": 2, "t": [2, 3], "have": [2, 5], "find": [2, 5], "instruct": [2, 3], "new": [2, 5], "conda": 2, "env": 2, "3": [2, 5], "9": 2, "activ": 2, "reli": 2, "list": [2, 5], "requir": 2, "txt": 2, "pip": 2, "r": [2, 3, 5], "standard": [2, 5], "link": 2, "unzip": 2, "past": 2, "folder": [2, 5], "root": 2, "app": 2, "main": [2, 5], "script": [2, 3], "simple_script": 2, "base": [3, 5], "tool": 3, "design": 3, "apertur": [3, 5], "snapshot": 3, "cassi": [3, 5], "we": 3, "provid": 3, "graphic": 3, "user": 3, "interfac": 3, "develop": 3, "pyqt5": 3, "built": 3, "upon": 3, "rai": [3, 5], "trace": [3, 5], "equat": [3, 5], "method": [3, 5], "estim": 3, "format": 3, "gener": [3, 5], "realist": 3, "measur": [3, 5], "instrument": [3, 5], "wjwb08": 3, "doubl": 3, "gjb": 3, "07": 3, "propag": [3, 5], "higher": 3, "arw": 3, "13": 3, "implement": [3, 5], "hlcm20": 3, "anoth": 3, "paper": 3, "submit": 3, "soon": 3, "compon": [3, 5], "relat": [3, 5], "param": [3, 5], "length": [3, 5], "glass": 3, "orient": 3, "misalign": 3, "groov": 3, "four": 3, "analysi": 3, "gui": 3, "dataset": [3, 5], "slice": [3, 5], "compar": 3, "pattern": [3, 5], "filter": [3, 5], "cube": [3, 5], "acquisit": [3, 5], "detail": 3, "inform": [3, 5], "about": 3, "further": 3, "pleas": 3, "visit": 3, "our": 3, "tutori": 3, "basic": 3, "advanc": 3, "start": [3, 5], "instal": 3, "discov": 3, "A": [3, 5], "b": 3, "c": [3, 5], "d": 3, "api": 3, "index": [3, 5], "search": 3, "page": 3, "under": 3, "gnu": 3, "public": 3, "ani": [3, 5], "question": 3, "feedback": 3, "u": 3, "henri": 3, "arguello": 3, "hoover": 3, "rueda": 3, "yuehao": 3, "wu": 3, "denni": 3, "w": [3, 5], "prather": 3, "gonzalo": 3, "arc": 3, "comput": 3, "appli": [3, 5], "52": 3, "d12": 3, "mar": 3, "2013": 3, "doi": 3, "1364": 3, "ao": 3, "000d12": 3, "e": [3, 5], "gehm": [3, 5], "john": 3, "j": 3, "bradi": 3, "willett": 3, "schulz": 3, "shot": [3, 5], "compress": [3, 5], "dual": [3, 5], "express": [3, 5], "15": 3, "21": 3, "14013": 3, "oct": 3, "2007": [3, 5], "oe": 3, "014013": 3, "elizabeth": 3, "hemslei": 3, "simon": 3, "lacroix": 3, "herv": 3, "\u00e9": 3, "carfantan": 3, "antoin": 3, "monmayr": 3, "calibr": 3, "programm": 3, "commun": 3, "468": 3, "125767": 3, "aug": 3, "2020": 3, "1016": 3, "optcom": 3, "rou22": [3, 5], "rouxel": 3, "tude": 3, "un": 3, "imageur": 3, "hyperspectr": [3, 5], "adaptatif": 3, "dan": 3, "context": 3, "observ": [3, 5], "de": 3, "la": 3, "terr": 3, "Theses": 3, "insa": 3, "toulous": 3, "june": 3, "2022": 3, "url": 3, "http": [3, 5], "theses": 3, "hal": [3, 5], "scienc": 3, "tel": 3, "03997931": 3, "wagadarikar": 3, "47": 3, "b44": 3, "b51": 3, "2008": 3, "000b44": 3, "work": 5, "none": 5, "system_config_path": 5, "sourc": 5, "attribut": 5, "apply_psf": 5, "return": 5, "shape": 5, "3d": 5, "numpi": 5, "ndarrai": 5, "create_coordinates_grid": 5, "nb_of_pixels_along_x": 5, "nb_of_pixels_along_i": 5, "delta_x": 5, "delta_i": 5, "grid": 5, "axi": 5, "pixel": 5, "size": 5, "int": 5, "float": 5, "tupl": 5, "code": 5, "dict": 5, "h": 5, "l": 5, "number_of_pattern": 5, "apertureinterpol": 5, "current": 5, "default": 5, "block": 5, "interpolate_dataset_along_wavelength": 5, "new_wavelengths_sampl": 5, "chunk_siz": 5, "match": 5, "which": 5, "chunk": 5, "multiprocess": 5, "r_dt": 5, "c_dt": 5, "load": 5, "str": 5, "w_dt": 5, "ignor": 5, "1": 5, "x_input_grid": 5, "y_input_grid": 5, "coded_apertur": 5, "1d": 5, "save": 5, "dictionari": 5, "set_up_system": 5, "initi": 5, "update_config": 5, "updat": 5, "re": 5, "opticalmodel": 5, "caracterist": 5, "calculate_alpha_c": 5, "calcul": 5, "incid": 5, "lens": 5, "calculate_central_dispers": 5, "central": 5, "spectral": 5, "calculate_minimum_devi": 5, "deviat": 5, "radian": 5, "check_if_sampling_is_suffici": 5, "check": 5, "suffici": 5, "avoid": 5, "alias": 5, "per": 5, "generate_2d_gaussian": 5, "sample_size_x": 5, "sample_size_i": 5, "nb_of_sampl": 5, "get_incident_angle_min_dev": 5, "d_m": 5, "model_grating_angle_to_angl": 5, "k_in": 5, "lba": 5, "wave": 5, "vector": 5, "outgo": 5, "model_lens_angle_to_posit": 5, "um": 5, "imag": 5, "model_lens_pos_to_angl": 5, "x_obj": 5, "y_obj": 5, "model_prism_angle_to_angl": 5, "k0": 5, "refract": 5, "propagate_through_arm": 5, "x_vec_in": 5, "y_vec_in": 5, "light": 5, "arm": 5, "flatten": 5, "propagation_with_distors": 5, "propagation_with_no_distors": 5, "vanilla": 5, "most": 5, "simul": 5, "sellmeier": 5, "lambda_": 5, "glass_typ": 5, "bk7": 5, "lambda": 5, "set_optical_config": 5, "set_wavelength": 5, "wavelength_min": 5, "wavelength_max": 5, "nb_of_spectral_sampl": 5, "simplified_grating_in_out": 5, "new_config": 5, "functions_scen": 5, "explore_spectrum": 5, "img": 5, "complete_gt": 5, "class_nam": 5, "ignored_label": 5, "plot": 5, "mean": 5, "std": 5, "option": 5, "mean_spectrum": 5, "get_dataset": 5, "specifi": 5, "where": 5, "wxhxb": 5, "integ": 5, "interpolate_data_along_wavelength": 5, "current_sampl": 5, "new_sampl": 5, "third": 5, "3rd": 5, "palette_init": 5, "label_valu": 5, "palett": 5, "findlargestvoid": 5, "binarypattern": 5, "standarddevi": 5, "indic": 5, "largest": 5, "void": 5, "binari": 5, "ulichnei": 5, "boolean": 5, "two": 5, "dimension": 5, "although": 5, "arbitrari": 5, "isotrop": 5, "anisotrop": 5, "eturn": 5, "flat": 5, "definit": 5, "major": 5, "sa": 5, "getvoidandclusterbluenois": 5, "findtightestclust": 5, "like": 5, "tightest": 5, "cluster": 5, "minor": 5, "outputshap": 5, "5": 5, "initialseedfract": 5, "dither": 5, "propos": 5, "1993": 5, "publish": 5, "proc": 5, "spie": 5, "1913": 5, "output": 5, "though": 5, "test": 5, "pass": 5, "height": 5, "larger": 5, "lead": 5, "low": 5, "better": 5, "isotropi": 5, "small": 5, "less": 5, "want": 5, "non": 5, "determinist": 5, "algorithm": 5, "mark": 5, "randomli": 5, "fraction": 5, "ha": 5, "than": 5, "veri": 5, "beyond": 5, "littl": 5, "np": 5, "prod": 5, "exactli": 5, "generate_blue_noise_type_1_pattern": 5, "pseudo": 5, "generate_blue_noise_type_2_pattern": 5, "initial_seed_fract": 5, "generate_ln_orthogonal_pattern": 5, "orthogon": 5, "02993037": 5, "generate_orthogonal_pattern": 5, "generate_random_pattern": 5, "rom": 5, "rate": 5, "close": 5, "mirror": 5, "ratio": 5, "generate_slit_pattern": 5, "slit_posit": 5, "slit_width": 5, "goe": 5, "increas": 5, "load_custom_list_of_pattern": 5, "patterns_path": 5, "load_custom_pattern": 5, "pattern_path": 5, "functions_acquisit": 5, "crop_cent": 5, "keep": 5, "generate_dd_measur": 5, "filtering_cub": 5, "dd": 5, "ref": 5, "et": 5, "al": 5, "hadamard": 5, "product": 5, "generate_sd_measurement_cub": 5, "filtered_scen": 5, "x_input": 5, "y_input": 5, "x_target": 5, "y_target": 5, "grid_typ": 5, "interp_method": 5, "sd": 5, "interpolate_data_on_grid_posit": 5, "x_init": 5, "y_init": 5, "unstructur": 5, "linear": 5, "target": 5, "other": 5, "regular": 5, "match_dataset_labels_to_instru": 5, "dataset_label": 5, "either": 5, "pad": 5, "match_dataset_to_instru": 5, "worker_regulargrid": 5, "arg": 5, "parallel": 5, "structur": 5, "griddata": 5, "ident": 5, "could": 5, "faster": 5, "x_init_2d": 5, "y_init_2d": 5, "data_2d": 5, "x_target_2d": 5, "y_target_2d": 5, "worker_unstructur": 5, "initialize_acquisitions_directori": 5, "file_path": 5, "yaml": 5, "rotation_x": 5, "theta": 5, "rotat": 5, "matrix": 5, "around": 5, "rad": 5, "rotation_i": 5, "rotation_z": 5, "z": 5, "config_file_nam": 5, "config_fil": 5, "file_nam": 5, "hdf5": 5}, "objects": {"simca": [[5, 0, 0, "-", "CassiSystem"], [5, 0, 0, "-", "OpticalModel"], [5, 0, 0, "-", "functions_acquisition"], [5, 0, 0, "-", "functions_general_purpose"], [5, 0, 0, "-", "functions_patterns_generation"], [5, 0, 0, "-", "functions_scenes"]], "simca.CassiSystem": [[5, 1, 1, "", "CassiSystem"]], "simca.CassiSystem.CassiSystem": [[5, 2, 1, "", "apply_psf"], [5, 2, 1, "", "create_coordinates_grid"], [5, 2, 1, "", "generate_2D_pattern"], [5, 2, 1, "", "generate_filtering_cube"], [5, 2, 1, "", "generate_multiple_filtering_cubes"], [5, 2, 1, "", "generate_multiple_patterns"], [5, 2, 1, "", "image_acquisition"], [5, 2, 1, "", "interpolate_dataset_along_wavelengths"], [5, 2, 1, "", "load_dataset"], [5, 2, 1, "", "multiple_image_acquisitions"], [5, 2, 1, "", "propagate_coded_aperture_grid"], [5, 2, 1, "", "save_acquisition"], [5, 2, 1, "", "set_up_system"], [5, 2, 1, "", "update_config"]], "simca.OpticalModel": [[5, 1, 1, "", "OpticalModel"]], "simca.OpticalModel.OpticalModel": [[5, 2, 1, "", "calculate_alpha_c"], [5, 2, 1, "", "calculate_central_dispersion"], [5, 2, 1, "", "calculate_minimum_deviation"], [5, 2, 1, "", "check_if_sampling_is_sufficiant"], [5, 2, 1, "", "generate_2D_gaussian"], [5, 2, 1, "", "generate_psf"], [5, 2, 1, "", "get_incident_angle_min_dev"], [5, 2, 1, "", "model_Grating_angle_to_angle"], [5, 2, 1, "", "model_Lens_angle_to_position"], [5, 2, 1, "", "model_Lens_pos_to_angle"], [5, 2, 1, "", "model_Prism_angle_to_angle"], [5, 2, 1, "", "propagate_through_arm"], [5, 2, 1, "", "propagation_with_distorsions"], [5, 2, 1, "", "propagation_with_no_distorsions"], [5, 2, 1, "", "sellmeier"], [5, 2, 1, "", "set_optical_config"], [5, 2, 1, "", "set_wavelengths"], [5, 2, 1, "", "simplified_grating_in_out"], [5, 2, 1, "", "update_config"]], "simca.functions_acquisition": [[5, 3, 1, "", "crop_center"], [5, 3, 1, "", "generate_dd_measurement"], [5, 3, 1, "", "generate_sd_measurement_cube"], [5, 3, 1, "", "interpolate_data_on_grid_positions"], [5, 3, 1, "", "match_dataset_labels_to_instrument"], [5, 3, 1, "", "match_dataset_to_instrument"], [5, 3, 1, "", "worker_regulargrid"], [5, 3, 1, "", "worker_unstructured"]], "simca.functions_general_purpose": [[5, 3, 1, "", "initialize_acquisitions_directory"], [5, 3, 1, "", "load_yaml_config"], [5, 3, 1, "", "rotation_x"], [5, 3, 1, "", "rotation_y"], [5, 3, 1, "", "rotation_z"], [5, 3, 1, "", "save_config_file"], [5, 3, 1, "", "save_data_in_hdf5"]], "simca.functions_patterns_generation": [[5, 3, 1, "", "FindLargestVoid"], [5, 3, 1, "", "FindTightestCluster"], [5, 3, 1, "", "GetVoidAndClusterBlueNoise"], [5, 3, 1, "", "generate_blue_noise_type_1_pattern"], [5, 3, 1, "", "generate_blue_noise_type_2_pattern"], [5, 3, 1, "", "generate_ln_orthogonal_pattern"], [5, 3, 1, "", "generate_orthogonal_pattern"], [5, 3, 1, "", "generate_random_pattern"], [5, 3, 1, "", "generate_slit_pattern"], [5, 3, 1, "", "load_custom_list_of_patterns"], [5, 3, 1, "", "load_custom_pattern"]], "simca.functions_scenes": [[5, 3, 1, "", "explore_spectrums"], [5, 3, 1, "", "get_dataset"], [5, 3, 1, "", "interpolate_data_along_wavelength"], [5, 3, 1, "", "palette_init"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"]}, "titleterms": {"tutori": [0, 1], "advanc": 0, "onli": 0, "script": 0, "singl": 0, "acquisit": [0, 1], "setup": 0, "initi": 0, "cassisystem": 0, "load": [0, 1], "hyperspectr": [0, 1], "dataset": [0, 1, 2], "gener": [0, 1], "code": [0, 1, 3], "apertur": [0, 1], "pattern": [0, 1], "propag": [0, 1], "grid": [0, 1], "filter": [0, 1], "cube": [0, 1], "option": [0, 2], "psf": 0, "simul": [0, 1, 3], "save": 0, "multipl": 0, "basic": 1, "gui": [1, 2], "discov": 1, "main": [1, 3], "featur": [1, 3], "A": 1, "analysi": 1, "1": [1, 2], "set": 1, "2": [1, 2], "button": 1, "3": 1, "displai": 1, "window": 1, "compar": 1, "spectra": 1, "labelis": 1, "map": 1, "histogram": 1, "b": 1, "optic": [1, 3], "design": 1, "system": 1, "run": 1, "distort": 1, "c": 1, "4": 1, "slice": 1, "d": 1, "measur": 1, "compress": 1, "spectral": [1, 3], "imag": [1, 3], "panchromat": 1, "get": 2, "start": 2, "instal": 2, "usag": 2, "download": 2, "quick": 2, "api": [2, 5], "simca": 3, "content": 3, "indic": 3, "tabl": 3, "licens": 3, "contact": 3, "refer": [3, 5], "cassi_system": 4, "class": 5, "function": 5}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinxcontrib.bibtex": 9, "sphinx": 60}, "alltitles": {"Tutorial - Advanced (only script)": [[0, "tutorial-advanced-only-script"]], "Single acquisition": [[0, "single-acquisition"]], "Setup": [[0, "setup"], [0, "id1"]], "Initialize the CassiSystem": [[0, "initialize-the-cassisystem"], [0, "id2"]], "Load the Hyperspectral dataset": [[0, "load-the-hyperspectral-dataset"], [0, "id3"]], "Generate the Coded Aperture Pattern": [[0, "generate-the-coded-aperture-pattern"]], "Propagate the Coded Aperture Grid": [[0, "propagate-the-coded-aperture-grid"], [0, "id4"]], "Generate the Filtering Cube": [[0, "generate-the-filtering-cube"]], "(Optional) Generate the PSF": [[0, "optional-generate-the-psf"]], "Simulate the Acquisition": [[0, "simulate-the-acquisition"]], "Save the Acquisition": [[0, "save-the-acquisition"], [0, "id5"]], "Multiple acquisitions": [[0, "multiple-acquisitions"]], "Generate Multiple Patterns for Acquisition": [[0, "generate-multiple-patterns-for-acquisition"]], "Generate Multiple Filtering Cubes": [[0, "generate-multiple-filtering-cubes"]], "Simulate Multiple Acquisitions": [[0, "simulate-multiple-acquisitions"]], "Tutorial - Basics (with GUI)": [[1, "tutorial-basics-with-gui"]], "Discover Main Features": [[1, "discover-main-features"]], "Feature A : Dataset Analysis": [[1, "feature-a-dataset-analysis"]], "1. Settings": [[1, "settings"], [1, "id1"]], "2. Load dataset button": [[1, "load-dataset-button"]], "3. Display windows": [[1, "display-windows"]], "Hyperspectral cube": [[1, "hyperspectral-cube"]], "Compare Spectra": [[1, "compare-spectra"]], "Labelisation map": [[1, "labelisation-map"]], "Labelisation Histogram": [[1, "labelisation-histogram"]], "Feature B : Optical Design": [[1, "feature-b-optical-design"]], "1. System Settings": [[1, "system-settings"]], "2. Run Simulation button": [[1, "run-simulation-button"]], "3. Display": [[1, "display"]], "Coded aperture grid": [[1, "coded-aperture-grid"]], "Propagated coded aperture grid": [[1, "propagated-coded-aperture-grid"]], "Distortion maps": [[1, "distortion-maps"]], "Feature C : Pattern generation": [[1, "feature-c-pattern-generation"]], "1. Patterns Settings": [[1, "patterns-settings"]], "2. Generate pattern": [[1, "generate-pattern"]], "3. Generate Filtering Cube button": [[1, "generate-filtering-cube-button"]], "4. Display Pattern and Filtering Cube": [[1, "display-pattern-and-filtering-cube"]], "Pattern": [[1, "pattern"]], "Filtering Cube, slice by slice": [[1, "filtering-cube-slice-by-slice"]], "Feature D : Acquisition": [[1, "feature-d-acquisition"]], "2. Run Acquisition button": [[1, "run-acquisition-button"]], "3. Display measurements": [[1, "display-measurements"]], "compressed measurements": [[1, "compressed-measurements"]], "Spectral images": [[1, "spectral-images"]], "Panchromatic image": [[1, "panchromatic-image"]], "Getting started": [[2, "getting-started"]], "Installation": [[2, "installation"]], "Usage": [[2, "usage"]], "Download datasets": [[2, "download-datasets"]], "Quick Start with GUI (option 1)": [[2, "quick-start-with-gui-option-1"]], "Quick Start with API (option 2)": [[2, "quick-start-with-api-option-2"]], "SIMCA : optical simulations for coded spectral imaging": [[3, "simca-optical-simulations-for-coded-spectral-imaging"]], "Main Features": [[3, "main-features"]], "Contents:": [[3, null]], "Indices and tables": [[3, "indices-and-tables"]], "License": [[3, "license"]], "Contact": [[3, "contact"]], "References": [[3, "references"]], "cassi_systems": [[4, "cassi-systems"]], "API Reference": [[5, "api-reference"]], "classes": [[5, "module-simca.CassiSystem"]], "functions": [[5, "functions"]]}, "indexentries": {"cassisystem (class in simca.cassisystem)": [[5, "simca.CassiSystem.CassiSystem"]], "findlargestvoid() (in module simca.functions_patterns_generation)": [[5, "simca.functions_patterns_generation.FindLargestVoid"]], "findtightestcluster() (in module simca.functions_patterns_generation)": [[5, "simca.functions_patterns_generation.FindTightestCluster"]], "getvoidandclusterbluenoise() (in module simca.functions_patterns_generation)": [[5, "simca.functions_patterns_generation.GetVoidAndClusterBlueNoise"]], "opticalmodel (class in simca.opticalmodel)": [[5, "simca.OpticalModel.OpticalModel"]], "apply_psf() (simca.cassisystem.cassisystem method)": [[5, "simca.CassiSystem.CassiSystem.apply_psf"]], "calculate_alpha_c() (simca.opticalmodel.opticalmodel method)": [[5, "simca.OpticalModel.OpticalModel.calculate_alpha_c"]], "calculate_central_dispersion() (simca.opticalmodel.opticalmodel method)": [[5, "simca.OpticalModel.OpticalModel.calculate_central_dispersion"]], "calculate_minimum_deviation() (simca.opticalmodel.opticalmodel method)": [[5, "simca.OpticalModel.OpticalModel.calculate_minimum_deviation"]], "check_if_sampling_is_sufficiant() (simca.opticalmodel.opticalmodel method)": [[5, "simca.OpticalModel.OpticalModel.check_if_sampling_is_sufficiant"]], "create_coordinates_grid() (simca.cassisystem.cassisystem method)": [[5, "simca.CassiSystem.CassiSystem.create_coordinates_grid"]], "crop_center() (in module simca.functions_acquisition)": [[5, "simca.functions_acquisition.crop_center"]], "explore_spectrums() (in module simca.functions_scenes)": [[5, "simca.functions_scenes.explore_spectrums"]], "generate_2d_gaussian() (simca.opticalmodel.opticalmodel method)": [[5, "simca.OpticalModel.OpticalModel.generate_2D_gaussian"]], "generate_2d_pattern() (simca.cassisystem.cassisystem method)": [[5, "simca.CassiSystem.CassiSystem.generate_2D_pattern"]], "generate_blue_noise_type_1_pattern() (in module simca.functions_patterns_generation)": [[5, "simca.functions_patterns_generation.generate_blue_noise_type_1_pattern"]], "generate_blue_noise_type_2_pattern() (in module simca.functions_patterns_generation)": [[5, "simca.functions_patterns_generation.generate_blue_noise_type_2_pattern"]], "generate_dd_measurement() (in module simca.functions_acquisition)": [[5, "simca.functions_acquisition.generate_dd_measurement"]], "generate_filtering_cube() (simca.cassisystem.cassisystem method)": [[5, "simca.CassiSystem.CassiSystem.generate_filtering_cube"]], "generate_ln_orthogonal_pattern() (in module simca.functions_patterns_generation)": [[5, "simca.functions_patterns_generation.generate_ln_orthogonal_pattern"]], "generate_multiple_filtering_cubes() (simca.cassisystem.cassisystem method)": [[5, "simca.CassiSystem.CassiSystem.generate_multiple_filtering_cubes"]], "generate_multiple_patterns() (simca.cassisystem.cassisystem method)": [[5, "simca.CassiSystem.CassiSystem.generate_multiple_patterns"]], "generate_orthogonal_pattern() (in module simca.functions_patterns_generation)": [[5, "simca.functions_patterns_generation.generate_orthogonal_pattern"]], "generate_psf() (simca.opticalmodel.opticalmodel method)": [[5, "simca.OpticalModel.OpticalModel.generate_psf"]], "generate_random_pattern() (in module simca.functions_patterns_generation)": [[5, "simca.functions_patterns_generation.generate_random_pattern"]], "generate_sd_measurement_cube() (in module simca.functions_acquisition)": [[5, "simca.functions_acquisition.generate_sd_measurement_cube"]], "generate_slit_pattern() (in module simca.functions_patterns_generation)": [[5, "simca.functions_patterns_generation.generate_slit_pattern"]], "get_dataset() (in module simca.functions_scenes)": [[5, "simca.functions_scenes.get_dataset"]], "get_incident_angle_min_dev() (simca.opticalmodel.opticalmodel method)": [[5, "simca.OpticalModel.OpticalModel.get_incident_angle_min_dev"]], "image_acquisition() (simca.cassisystem.cassisystem method)": [[5, "simca.CassiSystem.CassiSystem.image_acquisition"]], "initialize_acquisitions_directory() (in module simca.functions_general_purpose)": [[5, "simca.functions_general_purpose.initialize_acquisitions_directory"]], "interpolate_data_along_wavelength() (in module simca.functions_scenes)": [[5, "simca.functions_scenes.interpolate_data_along_wavelength"]], "interpolate_data_on_grid_positions() (in module simca.functions_acquisition)": [[5, "simca.functions_acquisition.interpolate_data_on_grid_positions"]], "interpolate_dataset_along_wavelengths() (simca.cassisystem.cassisystem method)": [[5, "simca.CassiSystem.CassiSystem.interpolate_dataset_along_wavelengths"]], "load_custom_list_of_patterns() (in module simca.functions_patterns_generation)": [[5, "simca.functions_patterns_generation.load_custom_list_of_patterns"]], "load_custom_pattern() (in module simca.functions_patterns_generation)": [[5, "simca.functions_patterns_generation.load_custom_pattern"]], "load_dataset() (simca.cassisystem.cassisystem method)": [[5, "simca.CassiSystem.CassiSystem.load_dataset"]], "load_yaml_config() (in module simca.functions_general_purpose)": [[5, "simca.functions_general_purpose.load_yaml_config"]], "match_dataset_labels_to_instrument() (in module simca.functions_acquisition)": [[5, "simca.functions_acquisition.match_dataset_labels_to_instrument"]], "match_dataset_to_instrument() (in module simca.functions_acquisition)": [[5, "simca.functions_acquisition.match_dataset_to_instrument"]], "model_grating_angle_to_angle() (simca.opticalmodel.opticalmodel method)": [[5, "simca.OpticalModel.OpticalModel.model_Grating_angle_to_angle"]], "model_lens_angle_to_position() (simca.opticalmodel.opticalmodel method)": [[5, "simca.OpticalModel.OpticalModel.model_Lens_angle_to_position"]], "model_lens_pos_to_angle() (simca.opticalmodel.opticalmodel method)": [[5, "simca.OpticalModel.OpticalModel.model_Lens_pos_to_angle"]], "model_prism_angle_to_angle() (simca.opticalmodel.opticalmodel method)": [[5, "simca.OpticalModel.OpticalModel.model_Prism_angle_to_angle"]], "module": [[5, "module-simca.CassiSystem"], [5, "module-simca.OpticalModel"], [5, "module-simca.functions_acquisition"], [5, "module-simca.functions_general_purpose"], [5, "module-simca.functions_patterns_generation"], [5, "module-simca.functions_scenes"]], "multiple_image_acquisitions() (simca.cassisystem.cassisystem method)": [[5, "simca.CassiSystem.CassiSystem.multiple_image_acquisitions"]], "palette_init() (in module simca.functions_scenes)": [[5, "simca.functions_scenes.palette_init"]], "propagate_coded_aperture_grid() (simca.cassisystem.cassisystem method)": [[5, "simca.CassiSystem.CassiSystem.propagate_coded_aperture_grid"]], "propagate_through_arm() (simca.opticalmodel.opticalmodel method)": [[5, "simca.OpticalModel.OpticalModel.propagate_through_arm"]], "propagation_with_distorsions() (simca.opticalmodel.opticalmodel method)": [[5, "simca.OpticalModel.OpticalModel.propagation_with_distorsions"]], "propagation_with_no_distorsions() (simca.opticalmodel.opticalmodel method)": [[5, "simca.OpticalModel.OpticalModel.propagation_with_no_distorsions"]], "rotation_x() (in module simca.functions_general_purpose)": [[5, "simca.functions_general_purpose.rotation_x"]], "rotation_y() (in module simca.functions_general_purpose)": [[5, "simca.functions_general_purpose.rotation_y"]], "rotation_z() (in module simca.functions_general_purpose)": [[5, "simca.functions_general_purpose.rotation_z"]], "save_acquisition() (simca.cassisystem.cassisystem method)": [[5, "simca.CassiSystem.CassiSystem.save_acquisition"]], "save_config_file() (in module simca.functions_general_purpose)": [[5, "simca.functions_general_purpose.save_config_file"]], "save_data_in_hdf5() (in module simca.functions_general_purpose)": [[5, "simca.functions_general_purpose.save_data_in_hdf5"]], "sellmeier() (simca.opticalmodel.opticalmodel method)": [[5, "simca.OpticalModel.OpticalModel.sellmeier"]], "set_optical_config() (simca.opticalmodel.opticalmodel method)": [[5, "simca.OpticalModel.OpticalModel.set_optical_config"]], "set_up_system() (simca.cassisystem.cassisystem method)": [[5, "simca.CassiSystem.CassiSystem.set_up_system"]], "set_wavelengths() (simca.opticalmodel.opticalmodel method)": [[5, "simca.OpticalModel.OpticalModel.set_wavelengths"]], "simca.cassisystem": [[5, "module-simca.CassiSystem"]], "simca.opticalmodel": [[5, "module-simca.OpticalModel"]], "simca.functions_acquisition": [[5, "module-simca.functions_acquisition"]], "simca.functions_general_purpose": [[5, "module-simca.functions_general_purpose"]], "simca.functions_patterns_generation": [[5, "module-simca.functions_patterns_generation"]], "simca.functions_scenes": [[5, "module-simca.functions_scenes"]], "simplified_grating_in_out() (simca.opticalmodel.opticalmodel method)": [[5, "simca.OpticalModel.OpticalModel.simplified_grating_in_out"]], "update_config() (simca.cassisystem.cassisystem method)": [[5, "simca.CassiSystem.CassiSystem.update_config"]], "update_config() (simca.opticalmodel.opticalmodel method)": [[5, "simca.OpticalModel.OpticalModel.update_config"]], "worker_regulargrid() (in module simca.functions_acquisition)": [[5, "simca.functions_acquisition.worker_regulargrid"]], "worker_unstructured() (in module simca.functions_acquisition)": [[5, "simca.functions_acquisition.worker_unstructured"]]}}) \ No newline at end of file diff --git a/simca.html b/simca.html new file mode 100644 index 0000000..2dbed06 --- /dev/null +++ b/simca.html @@ -0,0 +1,1372 @@ + + + + + + + API Reference — simca 1.0 documentation + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

API Reference

+
+
+

The simca package is based on the work [Rou22]

+
+

classes

+
+
+class simca.CassiSystem.CassiSystem(system_config=None, system_config_path=None)[source]
+

Bases: object

+

Class that contains the cassi system main attributes and methods

+
+
+apply_psf()[source]
+

Apply the PSF to the last measurement

+
+
Returns:
+

last measurement cube convolved with by PSF (shape= R x C x W). Each slice of the 3D filtered scene is convolved with the PSF

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+create_coordinates_grid(nb_of_pixels_along_x, nb_of_pixels_along_y, delta_x, delta_y)[source]
+

Create a coordinates grid for a given number of samples along X and Y axis and a given pixel size

+
+
Parameters:
+
    +
  • nb_of_pixels_along_x (int) – number of samples along X axis

  • +
  • nb_of_pixels_along_y (int) – number of samples along Y axis

  • +
  • delta_x (float) – pixel size along X axis

  • +
  • delta_y (float) – pixel size along Y axis

  • +
+
+
Returns:
+

X coordinates grid (numpy.ndarray) and Y coordinates grid (numpy.ndarray)

+
+
Return type:
+

tuple

+
+
+
+ +
+
+generate_2D_pattern(config_pattern)[source]
+

Generate the coded aperture 2D pattern based on the “pattern” configuration file

+
+
Parameters:
+

config_pattern (dict) – coded-aperture pattern configuration

+
+
Returns:
+

coded-aperture 2D pattern based on the configuration file (shape = H x L)

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+generate_filtering_cube()[source]
+

Generate filtering cube : each slice of the cube is a propagated pattern interpolated on the detector grid

+
+
Returns:
+

filtering cube generated according to the optical system & the pattern configuration (R x C x W)

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+generate_multiple_filtering_cubes(number_of_patterns)[source]
+

Generate multiple filtering cubes, each cube corresponds to a pattern, and for each pattern, each slice is a propagated coded apertureinterpolated on the detector grid

+
+
Parameters:
+

number_of_patterns (int) – number of patterns to generate

+
+
Returns:
+

filtering cubes generated according to the current optical system and the pattern configuration

+
+
Return type:
+

list

+
+
+
+ +
+
+generate_multiple_patterns(config_pattern, number_of_patterns)[source]
+

Generate a list of coded aperture patterns based on the “pattern” configuration file

+
+
Parameters:
+
    +
  • config_pattern (dict) – pattern configuration

  • +
  • number_of_patterns (int) – number of patterns to generate

  • +
+
+
Returns:
+

coded aperture patterns (numpy.ndarray) generated according to the configuration file

+
+
Return type:
+

list

+
+
+
+ +
+
+image_acquisition(use_psf=False, chunck_size=50)[source]
+

Run the acquisition/measurement process depending on the cassi system type

+
+
Parameters:
+

chunck_size (int) – default block size for the interpolation

+
+
Returns:
+

compressed measurement (R x C)

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+interpolate_dataset_along_wavelengths(new_wavelengths_sampling, chunk_size)[source]
+

Interpolate the dataset cube along the wavelength axis to match the system sampling

+
+
Parameters:
+
    +
  • new_wavelengths_sampling (numpy.ndarray) – new wavelengths on which to interpolate the dataset (shape = W)

  • +
  • chunk_size (int) – chunk size for the multiprocessing

  • +
+
+
Returns:
+

interpolated dataset cube along the wavelength axis (shape = R_dts x C_dts x W)

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+load_dataset(directory, dataset_name)[source]
+

Loading the dataset and related attributes

+
+
Parameters:
+
    +
  • directory (str) – name of the directory containing the dataset

  • +
  • dataset_name (str) – dataset name

  • +
+
+
Returns:
+

a list containing the dataset (shape= R_dts x C_dts x W_dts), the corresponding wavelengths (shape= W_dts), the labeled dataset, the label names and the ignored labels

+
+
Return type:
+

list

+
+
+
+ +
+
+multiple_image_acquisitions(use_psf=False, nb_of_filtering_cubes=1, chunck_size=50)[source]
+

Run the acquisition process depending on the cassi system type

+
+
Parameters:
+

chunck_size (int) – default block size for the dataset

+
+
Returns:
+

list of compressed measurements (list of numpy.ndarray of size R x C)

+
+
Return type:
+

list

+
+
+
+ +
+
+propagate_coded_aperture_grid(X_input_grid=None, Y_input_grid=None)[source]
+

Propagate the coded_aperture pattern through one CASSI system

+
+
Parameters:
+
    +
  • X_input_grid (numpy.ndarray) – x coordinates grid

  • +
  • Y_input_grid (numpy.ndarray) – y coordinates grid

  • +
+
+
Returns:
+

propagated coded aperture x coordinates grid in the detector plane (3D numpy.ndarray), propagated coded aperture y coordinates grid in the detector plane (3D numpy.ndarray), 1D array of propagated coded aperture x coordinates (numpy.ndarray), 1D array of system wavelengths (numpy.ndarray)

+
+
Return type:
+

tuple

+
+
+
+ +
+
+save_acquisition(config_pattern, config_acquisition)[source]
+

Save the all data related to an acquisition

+
+
Parameters:
+
    +
  • config_pattern (dict) – configuration dictionary related to pattern generation

  • +
  • config_acquisition (dict) – configuration dictionary related to acquisition parameters

  • +
+
+
+
+ +
+
+set_up_system(system_config_path=None, system_config=None)[source]
+

Loading system config & initializing the grids coordinates for the coded aperture and the detector

+
+
Parameters:
+
    +
  • system_config_path (str) – path to the configs file

  • +
  • system_config (dict) – system configuration

  • +
+
+
+
+ +
+
+update_config(system_config_path=None, system_config=None)[source]
+

Update the system configuration file and re-initialize the grids for the coded aperture and the detector

+
+
Parameters:
+
    +
  • system_config_path (str) – path to the configs file

  • +
  • system_config (dict) – system configuration

  • +
+
+
Returns:
+

updated system configuration

+
+
Return type:
+

dict

+
+
+
+ +
+ +
+
+class simca.OpticalModel.OpticalModel(system_config)[source]
+

Bases: object

+

Class that contains the optical model caracteristics and propagation models

+
+
+calculate_alpha_c()[source]
+

Calculate the relative angle of incidence between the lenses and the dispersive element

+
+
Returns:
+

angle of incidence

+
+
Return type:
+

float

+
+
+
+ +
+
+calculate_central_dispersion()[source]
+

Calculate the dispersion related to the central pixel of the coded aperture

+
+
Returns:
+

spectral dispersion of the central pixel of the coded aperture

+
+
Return type:
+

numpy.float

+
+
+
+ +
+
+calculate_minimum_deviation(n, A)[source]
+

minimum deviation angle of a prism of index n and apex angle A

+
+
Parameters:
+
    +
  • n (float or numpy.ndarray) – index of the prism – no units

  • +
  • A (float) – apex angle of the prism – in radians

  • +
+
+
Returns:
+

minimum deviation angle – in radians

+
+
Return type:
+

float or numpy.ndarray

+
+
+
+ +
+
+check_if_sampling_is_sufficiant()[source]
+

Check if the sampling is sufficiant to avoid aliasing.

+
+
Returns:
+

number of sample points per pixel

+
+
Return type:
+

float

+
+
+
+ +
+
+generate_2D_gaussian(radius, sample_size_x, sample_size_y, nb_of_samples)[source]
+

Generate a 2D Gaussian of a given radius

+
+
Parameters:
+
    +
  • radius (float) – radius of the Gaussian

  • +
  • sample_size_x (float) – size of each sample along the X axis

  • +
  • sample_size_y (float) – size of each sample along the Y axis

  • +
  • nb_of_samples (int) – number of samples along each axis

  • +
+
+
Returns:
+

2D Gaussian shape array

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+generate_psf(type, radius)[source]
+

Generate a PSF

+
+
Parameters:
+
    +
  • type (str) – type of PSF to generate

  • +
  • radius (float) – radius of the PSF

  • +
+
+
Returns:
+

PSF generated (shape = R x C)

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+get_incident_angle_min_dev(A, D_m)[source]
+

Calculate the angle of incidence corresponding to the minimum deviation angle

+
+
Parameters:
+
    +
  • A (float) – apex angle of the prism – in radians

  • +
  • D_m (float) – minimum deviation angle – in radians

  • +
+
+
Returns:
+

angle of incidence corresponding to minimum of deviation – in radians

+
+
Return type:
+

float

+
+
+
+ +
+
+model_Grating_angle_to_angle(k_in, lba, m, G)[source]
+

Model of the grating

+
+
Parameters:
+
    +
  • k_in (numpy.ndarray) – wave vector of the incident ray (shape = 3 x N)

  • +
  • lba (numpy.ndarray) – wavelengths (shape = N) – in nm

  • +
  • m (float) – diffraction order of the grating – no units

  • +
  • G (float) – lines density of the grating – in lines/mm

  • +
+
+
Returns:
+

wave vector of the outgoing ray (shape = 3 x N)

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+model_Lens_angle_to_position(k_in, F)[source]
+

Model of the lens : angle to position

+
+
Parameters:
+
    +
  • k_in (numpy.ndarray) – wave vector of the incident ray (shape = 3 x N)

  • +
  • F (float) – focal length of the lens – in um

  • +
+
+
Returns:
+

position in the image plane (X,Y) – in um

+
+
Return type:
+

tuple

+
+
+
+ +
+
+model_Lens_pos_to_angle(x_obj, y_obj, F)[source]
+

Model of the lens : position to angle

+
+
Parameters:
+
    +
  • x_obj (numpy.ndarray) – position X in the image plane (shape = N) – in um

  • +
  • y_obj (numpy.ndarray) – position Y in the image plane (shape = N) – in um

  • +
  • F (float) – focal length of the lens – in um

  • +
+
+
Returns:
+

wave vector of the outgoing ray (shape = 3 x N)

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+model_Prism_angle_to_angle(k0, n, A)[source]
+

Ray tracing through the prism

+
+
Parameters:
+
    +
  • k0 (numpy.ndarray) – wave vector of the incident ray (shape = 3 x N)

  • +
  • n (numpy.ndarray) – refractive index of the prism (shape = N)

  • +
  • A (float) – angle of the prism – in radians

  • +
+
+
Returns:
+

wave vector of the outgoing ray (shape = 3 x N)

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+propagate_through_arm(X_vec_in, Y_vec_in, n, lba)[source]
+

Propagate the light through one system arm : (lens + dispersive element + lens)

+
+
Parameters:
+
    +
  • X_vec_in (numpy.ndarray) – X coordinates of the coded aperture pixels (1D array)

  • +
  • Y_vec_in (numpy.ndarray) – Y coordinates of the coded aperture pixels (1D array)

  • +
  • n (numpy.ndarray) – refractive indexes of the system (at the corresponding wavelength)

  • +
  • lba (numpy.ndarray) – wavelengths

  • +
+
+
Returns:
+

flatten arrays corresponding to the propagated X and Y coordinates

+
+
Return type:
+

tuple

+
+
+
+ +
+
+propagation_with_distorsions(X_input_grid, Y_input_grid)[source]
+

Propagate the coded aperture coded_aperture through one CASSI system

+
+
Parameters:
+
    +
  • X_input_grid (numpy.ndarray) – x coordinates grid

  • +
  • Y_input_grid (numpy.ndarray) – y coordinates grid

  • +
+
+
Returns:
+

X coordinates of the propagated coded aperture grids, Y coordinates of the propagated coded aperture grids

+
+
Return type:
+

tuple

+
+
+
+ +
+
+propagation_with_no_distorsions(X_input_grid, Y_input_grid)[source]
+

Vanilla Propagation model used in most cassi acquisitions simulation.

+
+
Parameters:
+
    +
  • X_input_grid (numpy.ndarray) – X coordinates of the grid to be propagated (2D)

  • +
  • Y_input_grid (numpy.ndarray) – Y coordinates of the grid to be propagated (2D)

  • +
+
+
Returns:
+

X coordinates grids of the propagated coded apertures, Y coordinates grids of the propagated coded apertures

+
+
Return type:
+

tuple

+
+
+
+ +
+
+sellmeier(lambda_, glass_type='BK7')[source]
+

Evaluating the refractive index value of a prism for a given lambda based on Sellmeier equation

+
+
Parameters:
+

lambda (numpy.ndarray of float) – wavelength in nm

+
+
Returns:
+

index value corresponding to the input wavelength

+
+
Return type:
+

numpy.ndarray of float

+
+
+
+ +
+
+set_optical_config(config)[source]
+

Set the optical model configuration

+
+
Parameters:
+

config (dict) – configuration file

+
+
+
+ +
+
+set_wavelengths(wavelength_min, wavelength_max, nb_of_spectral_samples)[source]
+

Set the wavelengths range of the optical system

+
+
Parameters:
+
    +
  • wavelength_min (float) – minimum wavelength of the system

  • +
  • wavelength_max (float) – maximum wavelength of the system

  • +
  • nb_of_spectral_samples (int) – number of spectral samples of the system

  • +
+
+
+

Returns:

+
+ +
+
+simplified_grating_in_out(alpha, lba, m, G)[source]
+

Model 1D of the grating in the dispersion direction

+
+
Parameters:
+
    +
  • alpha (numpy.ndarray or float) – angle of the incident ray (shape = N) – in radians

  • +
  • lba (numpy.ndarray or float) – wavelengths (shape = N) – in nm

  • +
  • m (float) – diffraction order of the grating – no units

  • +
  • G (float) – lines density of the grating – in lines/mm

  • +
+
+
Returns:
+

angle of the outgoing ray (shape = N) – in radians

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+update_config(new_config)[source]
+

Update the optical model configuration

+
+
Parameters:
+

new_config (dict) – new configuration

+
+
+
+ +
+ +
+
+

functions

+
+
+
+simca.functions_scenes.explore_spectrums(img, complete_gt, class_names, ignored_labels=None)[source]
+

Plot sampled spectrums with mean + std for each class.

+
+
Parameters:
+
    +
  • img – 3D hyperspectral image

  • +
  • complete_gt – 2D array of labels

  • +
  • class_names – list of class names

  • +
  • ignored_labels (optional) – list of labels to ignore

  • +
+
+
Returns:
+

dict of mean spectrum by class

+
+
Return type:
+

mean_spectrums

+
+
+
+ +
+
+simca.functions_scenes.get_dataset(dataset_name, folder='./datasets/')[source]
+

Gets the dataset specified by name and return the related components. +:param dataset_name: the name of the dataset +:type dataset_name: str +:param folder: folder where the datasets are stored, defaults to “./datasets/” +:type folder: str

+
+
Returns:
+

3D hyperspectral image (WxHxB) +numpy.ndarray: 2D array of labels (integers) +list: list of class names +ignored_labels: list of int classes to ignore

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+simca.functions_scenes.interpolate_data_along_wavelength(data, current_sampling, new_sampling, chunk_size=50)[source]
+

Interpolate the input 3D data along a new sampling in the third axis.

+
+
Parameters:
+
    +
  • data (numpy.ndarray) – 3D data to interpolate

  • +
  • current_sampling (numpy.ndarray) – current sampling for the 3rd axis

  • +
  • new_sampling (numpy.ndarray) – new sampling for the 3rd axis

  • +
  • chunk_size (int) – size of the chunks to use for the interpolation

  • +
+
+
+
+ +
+
+simca.functions_scenes.palette_init(label_values)[source]
+

Creates a palette for the classes

+
+ +
+
+
+simca.functions_patterns_generation.FindLargestVoid(BinaryPattern, StandardDeviation)[source]
+
+
This function returns the indices of the largest void in the given binary
+

pattern as defined by Ulichney.

+
+
+
param BinaryPattern A boolean array (should be two-dimensional although the

implementation works in arbitrary dimensions).

+
+
param StandardDeviation The standard deviation used for the Gaussian filter

in pixels. This can be a single float for an isotropic Gaussian or a +tuple with one float per dimension for an anisotropic Gaussian.

+
+
+
+
eturn A flat index i such that BinaryPattern.flat[i] corresponds to the
+

largest void. By definition this is a majority pixel.

+
+

sa GetVoidAndClusterBlueNoise

+
+
+
+ +
+
+simca.functions_patterns_generation.FindTightestCluster(BinaryPattern, StandardDeviation)[source]
+
+
Like FindLargestVoid() but finds the tightest cluster which is a minority

pixel by definition.

+
+
+

sa GetVoidAndClusterBlueNoise

+
+ +
+
+simca.functions_patterns_generation.GetVoidAndClusterBlueNoise(OutputShape, StandardDeviation=1.5, InitialSeedFraction=0.1)[source]
+
+
Generates a blue noise dither array of the given shape using the method
+

proposed by Ulichney [1993] in “The void-and-cluster method for dither array +generation” published in Proc. SPIE 1913.

+
+
+
param OutputShape The shape of the output array. This function works in

arbitrary dimension, i.e. OutputShape can have arbitrary length. Though +it is only tested for the 2D case where you should pass a tuple +(Height,Width).

+
+
param StandardDeviation The standard deviation in pixels used for the

Gaussian filter defining largest voids and tightest clusters. Larger +values lead to more low-frequency content but better isotropy. Small +values lead to more ordered patterns with less low-frequency content. +Ulichney proposes to use a value of 1.5. If you want an anisotropic +Gaussian, you can pass a tuple of length len(OutputShape) with one +standard deviation per dimension.

+
+
param InitialSeedFraction The only non-deterministic step in the algorithm

marks a small number of pixels in the grid randomly. This parameter +defines the fraction of such points. It has to be positive but less +than 0.5. Very small values lead to ordered patterns, beyond that there +is little change.

+
+
+
+
eturn An integer array of shape OutputShape containing each integer from 0

to np.prod(OutputShape)-1 exactly once.

+
+
+
+ +
+
+simca.functions_patterns_generation.generate_blue_noise_type_1_pattern(shape)[source]
+

Generate blue noise (high frequency pseudo-random) type pattern

+
+
Parameters:
+

shape (tuple of int) – shape of the pattern

+
+
Returns:
+

binary blue noise type pattern

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+simca.functions_patterns_generation.generate_blue_noise_type_2_pattern(shape, std=1.5, initial_seed_fraction=0.1)[source]
+

Generate blue noise pattern according to the void-and-cluster method proposed by Ulichney [1993] in “The void-and-cluster method for dither array generation” published in Proc. SPIE 1913.

+
+
Parameters:
+
    +
  • shape (tuple) – size of the pattern

  • +
  • std (float) – standard deviation in pixels used for the Gaussian filter

  • +
  • initial_seed_fraction (float) – Initial fraction of marked pixels in the grid. Has to be less than 0.5. +Very small values lead to ordered patterns

  • +
+
+
Returns:
+

float blue noise pattern

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+simca.functions_patterns_generation.generate_ln_orthogonal_pattern(size, W, N)[source]
+

Generate a Length-N orthogonal pattern according to https://hal.laas.fr/hal-02993037

+
+
Parameters:
+
    +
  • size (tuple) – size of the pattern

  • +
  • W (int) – number of wavelengths in the scene

  • +
  • N (int) – number of acquisitions

  • +
+
+
Returns:
+

length-N orthogonal pattern of shape = size[0] x (size[1]+W-1) x N):

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+simca.functions_patterns_generation.generate_orthogonal_pattern(size, W, N)[source]
+

Generate an orthogonal pattern according to https://hal.laas.fr/hal-02993037

+
+
Parameters:
+
    +
  • size (list of int) – size of the pattern

  • +
  • W (int) – number of wavelengths in the scene

  • +
  • N (int) – number of acquisitions

  • +
+
+
Returns:
+

orthogonal pattern : shape = size[0] x (size[1]+W-1) x N):

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+simca.functions_patterns_generation.generate_random_pattern(shape, ROM)[source]
+

Generate a random pattern with a given rate of open/close mirrors

+
+
Parameters:
+
    +
  • shape (tuple of int) – shape of the pattern

  • +
  • ROM (float) – ratio of open mirrors

  • +
+
+
Returns:
+

random pattern

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+simca.functions_patterns_generation.generate_slit_pattern(shape, slit_position, slit_width)[source]
+

Generate a slit pattern that starts at the center of the image and goes to the right as slit position increases.

+
+
Parameters:
+
    +
  • shape (tuple) – shape of the pattern

  • +
  • slit_position (int) – position of the slit in relation to the central column

  • +
  • slit_width (int) – width of the slit in pixels

  • +
+
+
Returns:
+

slit pattern

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+simca.functions_patterns_generation.load_custom_list_of_patterns(shape, patterns_path)[source]
+

Load custom list of patterns from h5 file. If the patterns are not the same size as the coded aperture, crop from the center of the loaded patterns.

+
+
Parameters:
+
    +
  • shape (tuple) – size of the pattern

  • +
  • patterns_path (str) – path to the h5 file containing the patterns

  • +
+
+
Returns:
+

list of patterns

+
+
Return type:
+

list

+
+
+
+ +
+
+simca.functions_patterns_generation.load_custom_pattern(shape, pattern_path)[source]
+

Load custom pattern from h5 file. If the pattern is not the same size as the coded aperture, crop from the center of the loaded pattern.

+
+
Parameters:
+
    +
  • shape (tuple) – size of the pattern

  • +
  • pattern_path (str) – path to the h5 file containing the pattern

  • +
+
+
Returns:
+

float blue noise pattern

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+simca.functions_acquisition.crop_center(array, nb_of_pixels_along_x, nb_of_pixels_along_y)[source]
+

Crop the given array to the given size, centered on the array

+
+
Parameters:
+
    +
  • array (numpy.ndarray) – 2D array to be cropped

  • +
  • nb_of_pixels_along_x (int) – number of samples to keep along the X axis

  • +
  • nb_of_pixels_along_y (int) – number of samples to keep along the Y axis

  • +
+
+
Returns:
+

cropped array

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+simca.functions_acquisition.generate_dd_measurement(scene, filtering_cube, chunk_size)[source]
+

Generate DD-CASSI type system measurement from a scene and a filtering cube. ref : “Single-shot compressive spectral imaging with a dual-disperser architecture”, M.Gehm et al., Optics Express, 2007

+
+
Parameters:
+
    +
  • scene (numpy.ndarray) – observed scene (shape = R x C x W)

  • +
  • filtering_cube (numpy.ndarray) – filtering cube of the instrument for a given pattern (shape = R x C x W)

  • +
  • chunk_size (int) – size of the spatial chunks in which the Hadamard product is performed

  • +
+
+
Returns:
+

filtered scene (shape = R x C x W)

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+simca.functions_acquisition.generate_sd_measurement_cube(filtered_scene, X_input, Y_input, X_target, Y_target, grid_type, interp_method)[source]
+

Generate SD measurement cube from the coded aperture and the scene. +For Single-Disperser CASSI systems, the scene is filtered then propagated in the detector plane.

+
+
Parameters:
+

filtered_scene (numpy.ndarray) – filtered scene (shape = R x C x W)

+
+
Returns:
+

SD measurement cube (shape = R x C x W)

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+simca.functions_acquisition.interpolate_data_on_grid_positions(data, X_init, Y_init, X_target, Y_target, grid_type='unstructured', interp_method='linear')[source]
+

Interpolate data on a single 2D grid defined by X_target and Y_target

+
+
Parameters:
+
    +
  • data (numpy.ndarray) – data to interpolate (3D or 2D)

  • +
  • X_init (numpy.ndarray) – X coordinates of the initial grid (3D)

  • +
  • Y_init (numpy.ndarray) – Y coordinates of the initial grid (3D)

  • +
  • X_target (numpy.ndarray) – X coordinates of the target grid (2D)

  • +
  • Y_target (numpy.ndarray) – Y coordinates of the target grid (2D)

  • +
  • grid_type (str) – type of the target grid (default = “unstructured”, other option = “regular”)

  • +
  • interp_method (str) – interpolation method (default = “linear”)

  • +
+
+
Returns:
+

3D data interpolated on the target grid

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+simca.functions_acquisition.match_dataset_labels_to_instrument(dataset_labels, filtering_cube)[source]
+

Match the size of the dataset labels to the size of the filtering cube. Either by padding or by cropping

+
+
Parameters:
+
    +
  • dataset_labels (numpy.ndarray) – dataset labels (shape = R_dts x C_dts)

  • +
  • filtering_cube (numpy.ndarray) – filtering cube of the instrument

  • +
+
+
Returns:
+

scene labels (shape = R x C)

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+simca.functions_acquisition.match_dataset_to_instrument(dataset, filtering_cube)[source]
+

Match the size of the dataset to the size of the filtering cube. Either by padding or by cropping

+
+
Parameters:
+
    +
  • dataset (numpy.ndarray) – dataset

  • +
  • filtering_cube (numpy.ndarray) – filtering cube of the instrument

  • +
+
+
Returns:
+

observed scene (shape = R x C x W)

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+simca.functions_acquisition.worker_regulargrid(args)[source]
+

Process to parallellize the structured griddata interpolation between the propagated grid (mask and the detector grid +Note : For now it is identical to the unstructured method but it could be faster …

+
+
Parameters:
+

args (tuple) – containing the following elements: X_init_2D, Y_init_2D, data_2D, X_target_2D, Y_target_2D

+
+
Returns:
+

2D array of the data interpolated on the target grid

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+simca.functions_acquisition.worker_unstructured(args)[source]
+

Process to parallellize the unstructured griddata interpolation between the propagated grid (mask and the detector grid

+
+
Parameters:
+

args (tuple) – containing the following elements: X_init_2D, Y_init_2D, data_2D, X_target_2D, Y_target_2D

+
+
Returns:
+

2D array of the data interpolated on the target grid

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+simca.functions_general_purpose.initialize_acquisitions_directory(config)[source]
+

Initialize the directory where the results of the acquisition will be stored

+
+
Parameters:
+

config (dict) – a configuration dictionary containing storing information

+
+
Returns:
+

path to the directory where the results will be stored

+
+
Return type:
+

str

+
+
+
+ +
+
+simca.functions_general_purpose.load_yaml_config(file_path)[source]
+

Load a YAML configuration file as a dictionary

+
+
Parameters:
+

file_path (str) – path to the YAML configuration file

+
+
Returns:
+

configuration dictionary

+
+
Return type:
+

dict

+
+
+
+ +
+
+simca.functions_general_purpose.rotation_x(theta)[source]
+

Rotate 3D matrix around the X axis

+
+
Parameters:
+

theta (float) – Input angle (in rad)

+
+
Returns:
+

2D rotation matrix

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+simca.functions_general_purpose.rotation_y(theta)[source]
+

Rotate 3D matrix around the Y axis

+
+
Parameters:
+

theta (float) – Input angle (in rad)

+
+
Returns:
+

2D rotation matrix

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+simca.functions_general_purpose.rotation_z(theta)[source]
+

Rotate 3D matrix around the Z axis

+
+
Parameters:
+

theta (float) – Input angle (in rad)

+
+
Returns:
+

2D rotation matrix

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+simca.functions_general_purpose.save_config_file(config_file_name, config_file, result_directory)[source]
+

Save a configuration file in a YAML file

+
+
Parameters:
+
    +
  • config_file_name (str) – name of the file

  • +
  • config_file (dict) – configuration file to save

  • +
  • result_directory (str) – path to the directory where the results will be stored

  • +
+
+
+
+ +
+
+simca.functions_general_purpose.save_data_in_hdf5(file_name, data, result_directory)[source]
+

Save a dataset in a HDF5 file

+
+
Parameters:
+
    +
  • file_name (str) – name of the file

  • +
  • data (any type) – data to save

  • +
  • result_directory (str) – path to the directory where the results will be stored

  • +
+
+
+
+ +
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file