-
Notifications
You must be signed in to change notification settings - Fork 0
/
parallel_master_LIGO_2.py
766 lines (514 loc) · 26.3 KB
/
parallel_master_LIGO_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
import numpy as np
import qpoint as qp
import healpy as hp
import pylab
from ligo_analyse_class import Ligo_Analyse
import readligo as rl
import ligo_filter as lf
import matplotlib as mlb
import matplotlib.pyplot as plt
plt.switch_backend('agg')
import time
import math
import MapBack_2 as mb #################
from matplotlib import cm
from mpi4py import MPI
ISMPI = True
#if mpi4py not present: ISMPI = False
import os
import sys
#FROM THE SHELL: data path, output path, type of input map, SNR level (noise =0, high, med, low)
data_path = sys.argv[1]
out_path = sys.argv[2]
maptyp = sys.argv[3]
noise_lvl = sys.argv[4]
noise_lvl = int(noise_lvl)
this_path = out_path
# poisson masked "flickering" map
poi = False
if maptyp == 'planck_poi': poi = True
# if declared from shell, load checkpoint file
try:
sys.argv[5]
except (NameError, IndexError):
checkpoint = False
else:
checkpoint = True
checkfile_path = sys.argv[5]
###############
def split(container, count):
"""
Simple function splitting a container into equal length chunks.
Order is not preserved but this is potentially an advantage depending on
the use case.
"""
return [container[_i::count] for _i in range(count)]
###############
EPSILON = 1E-24
# MPI setup for run
if ISMPI:
comm = MPI.COMM_WORLD
nproc = comm.Get_size()
myid = comm.Get_rank()
else:
comm = None
nproc = 1
myid = 0
if os.path.exists(data_path):
if myid==0:
print 'the data its in the ' , data_path
# file exists
if os.path.exists(out_path):
if myid==0:
print 'output goes to ' , out_path
if nproc < 120:
print 'myid: {} of {}'.format(myid,nproc)
####################################################################
if myid==0:
print '++++++++++++++++++++++++++'
print '=========================='
print '++++++++++++++++++++++++++'
print '=========================='
print (time.strftime("%H:%M:%S")), (time.strftime("%d/%m/%Y"))
print '++++++++++++++++++++++++++'
print '=========================='
print '++++++++++++++++++++++++++'
print '=========================='
print 'NOISE LEVEL: ', noise_lvl
####################################################################
# sampling rate; resolutions in/out
fs = 4096
nside_in = 32
nside_out = 8
npix_out = hp.nside2npix(nside_out)
# load the LIGO file list
ligo_data_dir = data_path
filelist = rl.FileList(directory=ligo_data_dir)
# declare whether to simulate (correlated) data (in frequency space)
sim = False
# frequency cuts (integrate over this range)
low_f = 30.
high_f = 500.
# spectral shape of the GWB
alpha = 3.
f0 = 100.
if myid==0:
print 'Delta f: ', [low_f, high_f], 'spectral idx and ref freq: ', [alpha,f0]
# DETECTORS (should make this external input)
dects = ['H1','L1']
ndet = len(dects)
nbase = int(ndet*(ndet-1)/2)
avoided = 0
# GAUSSIAN SIM. INPUT MAP CASE: make sure that the background map isn't re-simulated between scans,
# and between checkfiles
if myid == 0:
if checkpoint == False and maptyp == 'gauss':
map_in = mb.map_in_gauss(nside_in,noise_lvl)
np.savez('%s/map_in%s.npz' % (this_path,noise_lvl), map_in = map_in )
if myid==0:
print '~~~~~~~~~~~~'
print 'saved map_in_gauss in the out dir'
print '~~~~~~~~~~~~'
if checkpoint == True and maptyp == 'gauss':
maptyp = 'checkfile'
# when maptyp is checkfile it knows it doesn't need to re-make it, just pick it up from checkfile
# INITIALISE THE CLASS ######################
# args of class: nsides in/out; sampling frequency; freq cuts; declared detectors; the path of the checkfile; SNR level
run = mb.Telescope(nside_in,nside_out, fs, low_f, high_f, dects, maptyp,this_path,noise_lvl,alpha,f0)
##############################################
# PARALLELISATION : ID = 0 keeps track of work and stores the input maps, operators, etc.
# create the input map (or pick it up if maptyp = checkfile) and broadcast it to ID neq 0
if myid == 0:
map_in = run.map_in
#save a plot of the input map (can remove this/make it optional)
cbar = True
if maptyp == '1pole':
cbar = False
if myid==0:
print 'the monopole is ',map_in[0]
plt.figure()
hp.mollview(map_in,cbar = cbar)
plt.savefig('%s/map_in_%s.pdf' % (out_path,maptyp) )
plt.close('all')
else: map_in = None
map_in = comm.bcast(map_in, root=0)
########################## RUN TIMES #########################################
# RUN TIMES : define start and stop time to search in GPS seconds;
# if checkpoint = True make sure to start from end of checkpoint
counter = 0 #counter = number of mins analysed
start = 1126224017 #start = start time of O1 ...
if checkpoint == True:
checkdata = np.load(checkfile_path)
counter = checkdata['counter']
start = np.int(checkdata['checkstart']) # ... start = checkpointed endtime
stop = 1137254417 #O1 end GPS
##########################################################################
########################### data massage #################################
# FLAGGING; SEGMENTING
if myid==0:
print 'flagging the good data...'
if myid == 0:
segs_begin, segs_end = run.flagger(start,stop,filelist)
segs_begin = list(segs_begin)
segs_end = list(segs_end)
#tot_time = sum(np.array(segs_end)-np.array(segs_begin))
#tot_time /= 60.*60.*24.
i = 0
while i in np.arange(len(segs_begin)):
delta = segs_end[i]-segs_begin[i]
if delta > 15000: #250 min
steps = int(math.floor(delta/15000.))
for j in np.arange(steps):
step = segs_begin[i]+(j+1)*15000
segs_end[i+j:i+j]=[step]
segs_begin[i+j+1:i+j+1]=[step]
i+=steps+1
else: i+=1
else:
segs_begin = None
segs_end = None
# broadcast the segments heads+tails to id neq 0
segs_begin = comm.bcast(segs_begin, root=0)
segs_end = comm.bcast(segs_end, root=0)
############################## SETUP OF THE RUN #################################
# create empty objects for every processor:
#ctime array; LH strain array; LL strain array; baseline pixels array (1 item pm)
ctime_nproc = []
strain1_nproc = []
strain2_nproc = []
b_pixes = []
# create empty objects for just ID = 0:
# Z_p total dirty map (summed over the minutes and the baselines)
# S_p total clean map (re-obtained perdiocally from M_p_pp^-1 * Z_p => updated)
# M_p_pp total beam-pattern matrix (summed over the minutes and the baselines)
# A_pp total norm matrix: beam-pattern w/out NOISE (summed over the minutes and the baselines) ## -> NORMALI
# A_p total projector: dirty map w/out DATA & NOISE (summed over the minutes and the baselines) ## -> SATION
# conds condition number array (1 item pm - continuously updated)
# H1_PSD_fits / L1_PSD_fits sets of 3 fit parameters to LIGO PSDs: accumulated 1 pm with format array([a,b,c])
# objects above are read from checkfile if checkpoint = True; ESSENTIAL AS OBJECTS ARE ACCUMULATED OVER TIME
if myid == 0:
Z_p = np.zeros(npix_out)
S_p = np.zeros(npix_out)
M_p_pp = 0.
A_pp = 0.
A_p = 0.
conds = []
endtime = 0
H1_PSD_fits = []
L1_PSD_fits = []
if checkpoint == True:
Z_p += checkdata['Z_p']
M_p_pp += checkdata['M_p_pp']
S_p = None # final clean map gets re-estimated every time
A_p += checkdata['A_p']
A_pp += checkdata['A_pp']
conds = checkdata['conds'] # keep appending to conds array
avoided = checkdata['avoided']
print 'we are at minute', counter , 'with startime' , start
# (objs are empty for ID neq 0 )
else:
Z_p = None
S_p = None
M_p_pp = None
A_p = None
A_pp = None
counter = 0
# broadcast checkpointed input map to every proc
if checkpoint == True:
map_in = comm.bcast(map_in, root=0)
# save a copy of the map for the checkfile; this is a safety fool-proof measure
map_in_save = map_in.copy()
########################### data massage 2 #################################
# SEGMENTING THE DATA & HANDING IT OUT
# this is done efficiently : number of segments handed out per iteration of algorithm = nproc
if myid==0:
print 'segmenting the data...'
for sdx, (begin, end) in enumerate(zip(segs_begin,segs_end)):
n=sdx+1
# ID = 0 segments the data
if myid == 0:
ctime, strain_H1, strain_L1 = run.segmenter(begin,end,filelist)
len_ctime = len(ctime)
else:
ctime = None
strain_H1 = None
strain_L1 = None
len_ctime = None
len_ctime_nproc = None
# then each ID neq zero gets a copy
len_ctime = comm.bcast(len_ctime, root=0)
#strain_H1 = comm.bcast(strain_H1, root=0)
#strain_L1 = comm.bcast(strain_L1, root=0)
if len_ctime<2 : continue #discard short segments (may up this to ~10 mins)
#idx_block: keep track of how many mins we're handing out
idx_block = 0
while idx_block < len_ctime:
# accumulate ctime, strain arrays of length exactly nproc
if myid == 0:
ctime_nproc.append(ctime[idx_block])
strain1_nproc.append(strain_H1[idx_block])
strain2_nproc.append(strain_L1[idx_block])
len_ctime_nproc = len(ctime_nproc)
# iminutes % nprocs == rank
len_ctime_nproc = comm.bcast(len_ctime_nproc, root=0)
if len_ctime_nproc == nproc: # when you hit nproc start itearation
# create personal proc empty objects:
# z_p personal dirty map (summed over the baselines)
# my_M_p_pp personal beam-pattern matrix (summed over the baselines)
# my_A_pp personal norm matrix: beam-pattern w/out NOISE (summed over the baselines)
# my_A_p personal projector: dirty map w/out DATA & NOISE (summed over the baselines)
# cond condition number array (1 item pm -> will be accumulated in chuncks of nproc)
z_p = np.zeros(npix_out)
my_A_p = np.zeros(npix_out)
my_A_pp = np.zeros((npix_out,npix_out))
my_M_p_pp = np.zeros((npix_out,npix_out))
cond = 0.
pix_bs_up = np.zeros(nbase)
# hand out the work to the procs
idx_list = np.arange(nproc)
if myid == 0:
my_idx = np.split(idx_list, nproc)
else:
my_idx = None
if ISMPI:
my_idx = comm.scatter(my_idx)
my_ctime = comm.scatter(ctime_nproc)#ctime_nproc[my_idx[0]]
my_h1 = comm.scatter(strain1_nproc)
my_l1 = comm.scatter(strain2_nproc)
my_endtime = my_ctime[-1]
########################### data massage 3 #################################
# FILTERING/SIMULATING & FFTing THE DATA; PREPPING IT FOR MAPPING
if myid==0:
print 'filtering, ffting & saving the strains...'
# Fourier space objects: Nt optimal timestream length; freqs frequency array at chosen fs
Nt = len(my_h1)
Nt = lf.bestFFTlength(Nt)
freqs = np.fft.rfftfreq(2*Nt, 1./fs)
freqs = freqs[:Nt/2+1]
# frequency mask
mask = (freqs>low_f) & (freqs < high_f)
# repackage the strains & copy them (fool-proof); create empty array for the filtered, FFTed, correlated data
strains = (my_h1,my_l1)
strains_copy = (my_h1.copy(),my_l1.copy()) #calcualte psds from these
strains_f = []
# HERE WE GO: at this stage, we use injector() to recover the psd params & flags (needed to discard poor-fit segs)
psds, flags = run.injector(strains_copy,my_ctime,low_f,high_f,poi)
#
# psds shape: [array([a1,b1,c1]), array([a2,b2,c2])]
#
# if there is a flagged minute, we discard it
avoid = False
if sum(flags) > 0:
avoid = True
psds[0] = np.array([ 0., 0., 0.])
psds[1] = np.copy(psds[0])
avoided += 1
if avoid is not True:
# create empty array for the psds: these will just be the function PDX from the class with the
# params [a,b,c] estimated above sampled at freqs. LENGTH = NUMBER OF DECTS
psds_f = []
for i in range(ndet):
psds_f.append(run.PDX(freqs,psds[i][0],psds[i][1],psds[i][2]))
# FORK: if using real data, run filter() on it. If simulating, create sim corr data stream.
# Fill strains_f created above.
if sim == False:
for i in range(ndet):
strains_f.append(run.filter(strains[i], low_f,high_f,psds[i])[mask])
s = int(my_ctime[0])
# plt.figure()
# plt.loglog(freqs[mask],np.abs(strains_f[0])**2, label = 'data')
# #plt.loglog(freqs[mask],norm*hf_psd(freqs)[mask])
# plt.loglog(freqs[mask],psds_f[0][mask], label = 'notched pdx fit')
# #plt.loglog(frexx_notch, norm*Pxx_notch, label = 'fittings')
# plt.xlim(20.,1000.)
# plt.legend()
# plt.savefig('norm1%s.pdf' % s)
#
# plt.figure()
# plt.loglog(freqs[mask],np.abs(strains_f[1])**2, label = 'data')
# #plt.loglog(freqs[mask],norm*hf_psd(freqs)[mask])
# plt.loglog(freqs[mask],psds_f[1][mask], label = 'notched pdx fit')
# #plt.loglog(frexx_notch, norm*Pxx_notch, label = 'fittings')
# plt.xlim(20.,1000.)
# plt.legend()
# plt.savefig('norm2%s.pdf' % s)
#
# exit()
# ################
# s = int(1000*np.random.rand(1))
#
# plt.figure()
# plt.loglog(psds_f[0], label = 'H1 psd fit')
# plt.loglog(psds_f[1], label = 'L1 psd fit')
# plt.loglog(psds_f[0], label = 'H1 psd fit')
# plt.loglog(psds_f[1], label = 'L1 psd fit')
# plt.legend()
# plt.savefig('abs%s.pdf' % s)
#
# ################
strains_f = [(strains_f[0]*np.conj(strains_f[1]))] # become correlated strains
if sim == True:
if myid==0: print 'generating...'
h1_in = my_h1.copy()
l1_in = my_l1.copy()
strains_in = (h1_in,l1_in)
strains_corr = run.injector(strains_in,my_ctime,low_f,high_f,poi, sim)[0]
strains_corr = run.noisy(strains_corr,psds_f,mask)
strains_f = strains_corr
if myid==0: print 'filtering done'
################################################################################
########################### data massage over ################################
# NOW THE GOOD STUFF
if myid==0: print 'running the projector, obtaining a dirty map'
# PREP: run geometry() to get, for each minute:
# pix_bs - the pixels the baselines are pointing at
# q_ns - the quaternions of the zenith of the detectors
# pix_ns - the pixels corresponding to q_ns
# BONUS: pix_bs_up - a much higher resolution b pixel for trace-plot making
pix_bs = run.geometry(my_ctime)[0]
pix_bs_up = run.geometry_up(my_ctime)[0]
q_ns = run.geometry(my_ctime)[1]
pix_ns = run.geometry(my_ctime)[2]
### NEW : KEEPING TRACK OF TIME
# print the start time and save the end time of each segment; will select the max_endtime
# to hand down to the checkfile
if nproc < 120: print 'time: ', my_ctime[0]
#my_endtime = my_ctime[-1]
# THIS IS IT: apply the projector() to the correlated data
# saving:
# z_p which was personal dirty map, summed over the baseline
# my_M_p_pp personal beam-pattern matrix
# my_A_p
# my_A_pp
# condition number for the beam-pattern
if myid == 0: print 'proj run'
z_p, my_M_p_pp, my_A_p, my_A_pp = run.projector(my_ctime,strains_f,psds_f,freqs,pix_bs, q_ns, norm = True)
cond = np.linalg.cond(my_M_p_pp)
# out of the loop: each proc has a personal set of dirty maps and beam-patterns
# create buffers now to accumulate these operators
# BUFFERS:
# z_buffer dirty map
# A_p_buffer, A_pp_buffer for the norms
# M_p_pp_buffer beam-pattern
# conds_array to save the condition numbers as we go (maybe should calculate the condition at the very end -
# this may explain fuzziness of conds )
# a_buffer is just a format;
# pdx_H1/L1 params of the PDX fit
# b_buffer collection of baseline pixels
if myid == 0:
z_buffer = np.zeros_like(z_p)
A_p_buffer = np.zeros_like(z_p)
M_p_pp_buffer = np.zeros_like(my_M_p_pp)
A_pp_buffer = np.zeros_like(my_M_p_pp)
conds_array = np.zeros(nproc)
endtimes_array = np.zeros(nproc)
a_buffer = nproc * [0.,0.,0.]
pdx_H1 = np.zeros_like(a_buffer)
pdx_L1 = np.zeros_like(a_buffer)
b_buffer = nproc * [nbase*[0]]
else:
z_buffer = None
M_p_pp_buffer = None
A_pp_buffer = None
A_p_buffer = None
conds_array = None
endtimes_array = None
pdx_H1 = None
pdx_L1 = None
b_buffer = None
# let's collect the winnings: Reduce sums over the od 0 dimension, gather returns a list
# NOW THE BUFFERS ARE THE SUM OVER TIME OF THE DIRTY MAP/BEAM-PATTERN OVER nproc MINUTES
if ISMPI:
comm.barrier()
comm.Reduce(z_p, z_buffer, root = 0, op = MPI.SUM)
comm.Reduce(my_M_p_pp, M_p_pp_buffer, root = 0, op = MPI.SUM)
comm.Reduce(my_A_pp, A_pp_buffer, root = 0, op = MPI.SUM)
comm.Reduce(my_A_p, A_p_buffer, root = 0, op = MPI.SUM)
conds_array = comm.gather(cond, root = 0)
endtimes_array = comm.gather(my_endtime, root = 0)
pdx_H1 = comm.gather(psds[0],root = 0)
pdx_L1 = comm.gather(psds[1], root = 0)
b_buffer = comm.gather(pix_bs_up,root = 0) # saving the high res b_pixes to use in plots
if myid == 0:
counter += nproc
endtime = max(endtimes_array)
from astropy.time import Time
t = Time(endtime, format='unix')
t = np.int(Time(t, format='gps').value)
endtime = t
else:
z_buffer += z_p
counter += 1
M_p_pp_buffer += my_M_p_pp
A_pp_buffer += my_A_pp
A_p_buffer += my_A_p
conds.append(cond)
endtime = my_endtime
# LAST STEPS:
# update the dirty map & beam-pattern
# repackage arrays for checkpointing
# invert the beam-pattern and save a clean map to look at
if myid == 0:
print 'this is id 0'
Z_p += z_buffer
M_p_pp += M_p_pp_buffer
A_p += A_p_buffer
A_pp += A_pp_buffer
conds_array = np.array(conds_array)
np.append(conds,conds_array)
H1_PSD_fits.append(pdx_H1)
L1_PSD_fits.append(pdx_L1)
b_pixes.append(b_buffer)
H1_PSD_fits_flat = 0.
L1_PSD_fits_flat = 0.
H1_PSD_fits_flat = sum(H1_PSD_fits, [])
L1_PSD_fits_flat = sum(L1_PSD_fits, [])
b_pixes_flat = 0.
b_pixes_flat = np.concatenate(b_pixes).ravel().tolist()
np.savez('%s/b_pixes.npz' % out_path, b_pixes = b_pixes_flat ) #save the b_pixes file
print '+++'
print counter, 'mins analysed.'
print '+++'
print 'Inverting M...'
#### SVD invert the beam-pattern
M_p_pp_inv = np.linalg.pinv(M_p_pp,rcond=1.e-8)
print 'the matrix has been inverted!'
S_p = np.einsum('...ik,...k->...i', M_p_pp_inv, Z_p)
################################################################
#
# only checkpoint once in a while - set step to custom
#
step = 1
if counter % (nproc*step) == 0 or checkpoint == True:
fits1 = 0.
fits2 = 0.
fits1 = np.array(H1_PSD_fits_flat).T
fits2 = np.array(L1_PSD_fits_flat).T
fits1 = np.append(fits1,fits2,axis = 0)
# can save the list of fits params if so wish
# save a fits file for the clean map
# !!! NOTE !!! need to *1.e30 otherwise the numbers are to small (unsure why)
hp.fitsfunc.write_map('%s/S_p%s.fits' % (out_path,counter), S_p*1.e30)
# save checkfile with
# Z_p accumulated dirty map
# M_p_pp " beam-pattern
# A_p , A_pp " norms
# counter number of minutes analysed
# checkstart is the max endtime of the run - will be the new start of the next one
# conds progressive conditions on M_p_pp
# map_in input map for the simulated data
np.savez('%s/checkfile.npz' % out_path, Z_p=Z_p, M_p_pp=M_p_pp, A_p = A_p, A_pp = A_pp,counter = counter, checkstart = endtime, conds = conds, map_in = map_in_save, avoided = avoided )
#if counter % (nproc) == 0:
np.savez('%s/checkfile%s.npz' % (out_path,counter), Z_p=Z_p, M_p_pp=M_p_pp, A_p = A_p, A_pp = A_pp, counter = counter, checkstart = endtime, conds = conds, map_in = map_in_save, avoided = avoided )
print 'saved dirty_map, clean_map and checkfile @ min', counter, 'with endtime', endtime, '; avoided ', avoided, ' mins.'
#empty the lists to refill with other nproc segments
ctime_nproc = []
strain1_nproc = []
strain2_nproc = []
idx_block += 1
# FINALE: WHEN WE REACH THE END OF THE RUN
if myid == 0:
print 'looks like its really over...! save the last dance.npz'
hp.fitsfunc.write_map('%s/S_p_last.fits' % out_path, S_p*1.e30)
np.savez('%s/checkfile_last.npz' % out_path, Z_p=Z_p, M_p_pp=M_p_pp, A_p = A_p, A_pp = A_pp, counter = counter, checkstart = endtime, conds = conds, map_in = map_in_save )
##ssh -X [email protected]