forked from parthigcar/MINICHEM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpythermoread.py
206 lines (186 loc) · 8.02 KB
/
pythermoread.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
'''
File: pythermoread
Project: MINICHEMP
File Created: Monday, 8th April 2019 5:33:44 pm
Author: John Arul & Parth ([email protected], [email protected])
-----
Last Modified: Monday, 8th April 2019 5:34:50 pm
Modified By: John Arul & Parth Patel ([email protected], [email protected])
-----
Copyright: IGCAR - 2019
'''
import numpy as np
import itertools
import math
import re
from scipy.interpolate import InterpolatedUnivariateSpline
from chem_parse import chemparse
# Functions
def HRT(a1, a2, a3, a4, a5, a6, a7, b1, b2, t):
"""
Finds the value of H/RT
INPUT:
Cp coefficient: a1, a2, a3, a4, a5, a6, a7,
b1, b2: Integration coefficients
"""
return -a1 * t**(-2) + a2 * t**(-1) * math.log(t) + a3 + a4 * t/2 \
+ a5 * t**(2) / 3 + a6 * t**(3) / 4 + a7 * t**(4) / 5 + b1 / t
def SR(a1, a2, a3, a4, a5, a6, a7, b1, b2, t):
"""
Finds the value of S/R
INPUT:
Cp coefficient: a1, a2, a3, a4, a5, a6, a7,
b1, b2 : Integration coefficients
t : desired temperature
"""
return -a1*t**(-2)/2 - a2*t**(-1) + a3*math.log(t) + a4 * t + a5 * t**(2)/\
2 + a6 * t**(3) / 3 + a7 * t**(4) / 4 + b2
def GRT1(a1, a2, a3, a4, a5, a6, a7, b1, b2, temp):
"""
Calculates the thermochemical potential from the spcified 9 polynomial
coefficients and the temperature information.
Returns:
Chemical potential at the specified temperature.
"""
# return HRT(a1, a2, a3, a4, a5, a6, a7, b1, b2, temp) -\
# SR(a1, a2, a3, a4, a5, a6, a7, b1, b2, temp)
return HRT(a1, a2, a3, a4, a5, a6, a7, b1, b2, temp) -\
SR(a1, a2, a3, a4, a5, a6, a7, b1, b2, temp)
def thermoread():
"""
From the make lib input, this function reads all NASA 9 polynomial
thermochemical potentials for the all the chemical species and converts
this database into the dictionary.
This function also returns the stoichiometric data for all the
thermochemical species specified in the dictionary.
"""
f = open('thermo_chemical_database.txt', 'r') # processed from NASA lib
data = f.readlines()
stoichiometric_dict = {}
thermo_dict = {}
for line in data:
cols = line.split()
# if re.search('\(cr\)|\(L\)|\(a\)|\(b\)|\(c\)', cols[0]):
if float(cols[13]) > 0: # phase == condensed
sp_name = cols[0].replace('*', '')
lis = cols[3:13] # stoichiometric information
for i in range(5):
if sp_name not in stoichiometric_dict.keys():
stoichiometric_dict[sp_name] = []
stoichiometric_dict[sp_name].append(
[lis[2 * i], float(lis[2 * i + 1])])
tl = [float(cols[14]), float(cols[15])]
mwt = float(cols[16])
thermo = list(map(float, cols[17:26]))
# thermo_dict = [[[tl1, tl2], [tl3,tl4]],
# [[coeff_data1], [coeff_data2]]]
if sp_name not in thermo_dict.keys():
thermo_dict[sp_name] = [[], []]
thermo_dict[sp_name][0].append(tl)
thermo_dict[sp_name][1].append(thermo)
else: # else phase is gas
sp_name = cols[0].replace('*', '')
lis = cols[3:13] # stoichiometric information
# print(lis)
for i in range(5):
if sp_name not in stoichiometric_dict.keys():
stoichiometric_dict[sp_name] = []
stoichiometric_dict[sp_name].append(
[lis[2 * i], float(lis[2 * i + 1])])
ntl = float(cols[1])
# print(ntl, 'ntl')
temp_list = []
for i1 in range(int(ntl)):
temp_list.append([])
temp_list[i1].append(float(cols[14 + 2 * i1]))
temp_list[i1].append(float(cols[14 + (2 * i1 + 1)]))
if sp_name not in thermo_dict.keys():
thermo_dict[sp_name] = [[], []]
index = 14 + (2 * int(ntl) - 1) + 2
thermo_dict[sp_name] = [temp_list,
[list(map(float, cols[index:index + 9])),
list(map(float,
cols[index + 9: index + 18])),
list(map(float,
cols[index + 18: index + 27]))]]
return thermo_dict, stoichiometric_dict
def calculate_grt(grt_dict, input_temp, thermo_dict):
"""
The function calculates the chemical potential for the all the NASA CEA
lib chemical specis at specified input temperature.
input:
grt_dict: This dictionary is empty
input_temp: input temperature at which the chemical potential will be
calculated.
thermo_dict: dictionary containing NASA 9 polynomial thermochemical
database.
Returns:
Dictionary containing the chemical potentials at the specified temperature.
"""
for sp_name in thermo_dict.keys():
temp_list = thermo_dict[sp_name][0]
# if len(temp_list)>3:
# print(sp_name, len(temp_list))
temp_range = \
list(itertools.chain.from_iterable(thermo_dict[sp_name][0]))
k1 = 0
if min(temp_range) <= input_temp <= max(temp_range):
for i1 in temp_list:
if i1[0] <= input_temp <= i1[1]:
index1 = k1
break
k1 = k1 + 1
a1, a2, a3, a4, a5, a6, a7, b1, b2 =\
thermo_dict[sp_name][1][index1]
grt_dict[sp_name] = GRT1(a1, a2, a3, a4, a5,
a6, a7, b1, b2, input_temp)
else:
# This portion of code needs to be improvised
# (extrapolation of the condensed species)
# print('temp_range is outside of given ranges',
# sp_name, min(temp_range), max(temp_range))
if input_temp < min(temp_range):
a1, a2, a3, a4, a5, a6, a7, b1, b2 = thermo_dict[sp_name][1][0]
grt_dict[sp_name] = GRT1(a1, a2, a3, a4,
a5, a6, a7, b1, b2, min(temp_range))
# grt_dict[sp_name] = GRT1(a1, a2, a3, a4, a5,
# a6, a7, b1, b2, input_temp)
else:
a1, a2, a3, a4, a5, a6, a7, b1, b2 =\
thermo_dict[sp_name][1][-1]
# grt_dict[sp_name] = GRT1(a1, a2, a3, a4, a5,
# a6, a7, b1, b2, max(temp_range))
# grt_dict[sp_name] = GRT1(a1, a2, a3, a4, a5,
# a6, a7, b1, b2, input_temp)
# f =\
# InterpolatedUnivariateSpline([max(temp_range), input_temp],
# [GRT1(a1, a2, a3, a4, a5, a6,
# a7, b1, b2,
# max(temp_range)),
# GRT1(a1, a2, a3, a4, a5, a6,
# a7, b1, b2, input_temp)],
# k=1)
# This is hack for condensed species
grt_dict[sp_name] = 1e6 # f(input_temp)
return grt_dict
def grt(g_hts, hf, T):
"""
Function to calculate the chemical potentials from the janaf table values,
and prints the chemical potential for that temperature.
"""
return print(-g_hts/R + hf/R/T * 1000)
def only_grt(grt_dict, strlist):
'''
takes the input of the complete combination of the input element as
dictionary and the list of desired elements which we want to keep in
dictionary. The function will delete other species combination.
Input:
grt_dict: all combination of input1 from thermochem lib
strlist: list of the desired elements
Output:
grt_dict: only g/rt data of the desired elements which are in strlist.
'''
for i in list(grt_dict):
if i not in strlist:
del grt_dict[i]
return grt_dict