Integrated ExllamaV2 customized kernel into Fastchat to provide Faster GPTQ inference speed.
Note: Exllama not yet support embedding REST API.
Setup environment (please refer to this link for more details):
git clone https://github.com/turboderp/exllamav2
cd exllamav2
pip install -e .
Chat with the CLI:
python3 -m fastchat.serve.cli \
--model-path models/vicuna-7B-1.1-GPTQ-4bit-128g \
--enable-exllama
Start model worker:
# Download quantized model from huggingface
# Make sure you have git-lfs installed (https://git-lfs.com)
git lfs install
git clone https://huggingface.co/TheBloke/vicuna-7B-1.1-GPTQ-4bit-128g models/vicuna-7B-1.1-GPTQ-4bit-128g
# Load model with default configuration (max sequence length 4096, no GPU split setting).
python3 -m fastchat.serve.model_worker \
--model-path models/vicuna-7B-1.1-GPTQ-4bit-128g \
--enable-exllama
#Load model with max sequence length 2048, allocate 18 GB to CUDA:0 and 24 GB to CUDA:1.
python3 -m fastchat.serve.model_worker \
--model-path models/vicuna-7B-1.1-GPTQ-4bit-128g \
--enable-exllama \
--exllama-max-seq-len 2048 \
--exllama-gpu-split 18,24
--exllama-cache-8bit
can be used to enable 8-bit caching with exllama and save some VRAM.
Reference: https://github.com/turboderp/exllamav2#performance
Model | Mode | Size | grpsz | act | V1: 3090Ti | V1: 4090 | V2: 3090Ti | V2: 4090 |
---|---|---|---|---|---|---|---|---|
Llama | GPTQ | 7B | 128 | no | 143 t/s | 173 t/s | 175 t/s | 195 t/s |
Llama | GPTQ | 13B | 128 | no | 84 t/s | 102 t/s | 105 t/s | 110 t/s |
Llama | GPTQ | 33B | 128 | yes | 37 t/s | 45 t/s | 45 t/s | 48 t/s |
OpenLlama | GPTQ | 3B | 128 | yes | 194 t/s | 226 t/s | 295 t/s | 321 t/s |
CodeLlama | EXL2 4.0 bpw | 34B | - | - | - | - | 42 t/s | 48 t/s |
Llama2 | EXL2 3.0 bpw | 7B | - | - | - | - | 195 t/s | 224 t/s |
Llama2 | EXL2 4.0 bpw | 7B | - | - | - | - | 164 t/s | 197 t/s |
Llama2 | EXL2 5.0 bpw | 7B | - | - | - | - | 144 t/s | 160 t/s |
Llama2 | EXL2 2.5 bpw | 70B | - | - | - | - | 30 t/s | 35 t/s |
TinyLlama | EXL2 3.0 bpw | 1.1B | - | - | - | - | 536 t/s | 635 t/s |
TinyLlama | EXL2 4.0 bpw | 1.1B | - | - | - | - | 509 t/s | 590 t/s |