-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathconsistency_between_expert_gpt4.py
203 lines (177 loc) · 10.9 KB
/
consistency_between_expert_gpt4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import torch
import numpy as np
import pandas as pd
np.set_printoptions(precision=3)
# start_end_id = [[0,5], [5,25], [25,50]]
# direct_or_indirect: 0 or 1
# ckpt_files: [file0, file1]
# itrs: [0] or [0,2,4]
# the order inside ckpt_files and start_end_id should from small to large
def load_gpt4_scores(ckpt_files, start_end_id, direct_or_indirect, itrs):
ckpt_root_dir = "./Checkpoints/"
hyp_file = "background_inspiration_hypotheses.pt"
gpt4_score_files = ["automatic_evaluation_hypotheses_gpt4_{}_{}.pt".format(i, j) for i, j in start_end_id]
## gpt4_scores
gpt4_scores = {}
for cur_f in gpt4_score_files:
# cur_gpt4_scores
cur_gpt4_scores = None
for cur_ckpt_file_id in range(len(ckpt_files)):
try:
cur_score_file = os.path.join(ckpt_root_dir, ckpt_files[cur_ckpt_file_id], cur_f)
cur_gpt4_scores = torch.load(cur_score_file)
break
except:
continue
assert cur_gpt4_scores != None
gpt4_scores.update(cur_gpt4_scores)
## picked_hyp_id_file: picked_hyp_ids
picked_hyp_id_file = os.path.join(ckpt_root_dir, ckpt_files[0], "picked_hyp_id_{}.pt".format(direct_or_indirect))
picked_hyp_ids = torch.load(picked_hyp_id_file)
assert len(picked_hyp_ids) == len(gpt4_scores)
## backgrounds = []
backgrounds = []
for cur_file_id in range(len(ckpt_files)):
# cur_data
cur_file = os.path.join(ckpt_root_dir, ckpt_files[cur_file_id], hyp_file)
cur_data = torch.load(cur_file)
backgrounds += cur_data[2]
assert len(backgrounds) == len(gpt4_scores)
## picked_gpt4_scores = []
picked_gpt4_scores = []
for bkg_id, bkg in enumerate(backgrounds):
# cur_score: [[valid, novel, helpful], [valid, novel, helpful], [valid, novel, helpful]] or [[valid, novel, helpful]]
cur_score = []
for cur_i in itrs:
cur_single_score = gpt4_scores[bkg][direct_or_indirect][picked_hyp_ids[bkg_id]][cur_i]
# print("cur_single_score: ", cur_single_score)
if len(cur_single_score) != 1 or len(cur_single_score[0]) != 3:
print("Warning: cur_single_score: ", cur_single_score)
cur_score.append(cur_single_score)
else:
cur_score.append(cur_single_score[0])
assert len(cur_score) == 1 or len(cur_score) == 3
picked_gpt4_scores.append(cur_score)
assert len(picked_gpt4_scores) == len(gpt4_scores)
return picked_gpt4_scores
# list_scores: [scores0, scores1, ...]; should be in order of expert evaluation .xlsx file
# OUTPUT:
# full_list_of_validness, full_list_of_novelty, full_list_of_helpfulness
def unify_gpt4_scores(list_scores):
assert len(list_scores) == 4
full_list_of_validness, full_list_of_novelty, full_list_of_helpfulness = [], [], []
for cur_bkg_id in range(len(list_scores[0])):
for cur_scores in list_scores:
for cur_data_id in range(len(cur_scores[cur_bkg_id])):
if cur_scores[cur_bkg_id][cur_data_id] != []:
full_list_of_validness.append(cur_scores[cur_bkg_id][cur_data_id][0])
full_list_of_novelty.append(cur_scores[cur_bkg_id][cur_data_id][1])
full_list_of_helpfulness.append(cur_scores[cur_bkg_id][cur_data_id][2])
else:
full_list_of_validness.append(np.nan)
full_list_of_novelty.append(np.nan)
full_list_of_helpfulness.append(np.nan)
return full_list_of_validness, full_list_of_novelty, full_list_of_helpfulness
def consistency(list1, list2, if_hard_consistency):
assert len(list1) == len(list2)
assert if_hard_consistency == 0 or if_hard_consistency == 1
consistency_score = []
for cur_id in range(len(list1)):
s1 = float(list1[cur_id])
s2 = float(list2[cur_id])
# print("s1: {}; s2: {}".format(s1, s2))
if np.isnan(s1) or np.isnan(s2):
continue
abs_diff = abs(s1-s2)
if if_hard_consistency == 0:
if abs_diff == 0:
consistency_score.append(1)
elif abs_diff == 1:
consistency_score.append(0.75)
elif abs_diff == 2:
consistency_score.append(0.50)
elif abs_diff == 3:
consistency_score.append(0.25)
elif abs_diff == 4:
consistency_score.append(0.0)
else:
raise Exception("s1: {}; s2: {}".format(s1, s2))
else:
if abs_diff == 0:
consistency_score.append(1)
else:
consistency_score.append(0)
# Q: I forget why I add this constraint
# print("abs(len(consistency_score)): ", abs(len(consistency_score)))
assert abs(len(consistency_score) - 400) <= 5 or abs(len(consistency_score) - 208) <= 5
ave_consistency_score = sum(consistency_score) / len(consistency_score)
return ave_consistency_score
def read_expert_scores(expert_file):
root_data_dir = "./Checkpoints/expert_evaluation/"
# read from annotated random file
raw_corpus = pd.read_excel(os.path.join(root_data_dir, expert_file))
full_list_of_hyp = []
full_list_of_validness, full_list_of_novelty, full_list_of_helpfulness = [], [], []
cnt_nonNan_value = 0
for cur_data_id in range(len(raw_corpus)):
cur_data_hyp = raw_corpus["Hypothesis"][cur_data_id]
cur_data_val = raw_corpus["Validness"][cur_data_id]
cur_data_nov = raw_corpus["Novelty"][cur_data_id]
cur_data_hep = raw_corpus["Helpfulness"][cur_data_id]
full_list_of_hyp.append(cur_data_hyp)
full_list_of_validness.append(cur_data_val)
full_list_of_novelty.append(cur_data_nov)
full_list_of_helpfulness.append(cur_data_hep)
# cnt_nonNan_value
if np.isnan(float(cur_data_val)) == False:
if float(cur_data_val) in [1, 2, 3, 4, 5]:
cnt_nonNan_value += 1
assert len(full_list_of_hyp) == len(full_list_of_validness)
assert len(full_list_of_hyp) == len(full_list_of_novelty)
assert len(full_list_of_hyp) == len(full_list_of_helpfulness)
return full_list_of_validness, full_list_of_novelty, full_list_of_helpfulness, cnt_nonNan_value
def main():
## Hyper-parameter
# if_hard_consistency: 0/1
if_hard_consistency = 0
# expert evaluation file
expert_file_0 = 'expert_evaluation_normal_order.xlsx'
expert_file_1 = 'expert_evaluation_1_2_normal_order.xlsx'
## baseline ckpt
ckpt_baseline2_0_50 = "chatgpt_50bkg_0itr_bkgnoter0_indirect0_onlyindirect0_close0_ban1_baseline2_hypEqlInsp_manualTitleSuggester_clearSplit_pastfdbkmodified_hypSuggestor"
## Tomato-base ckpts
ckpt_tomato_base_0_25 = "chatgpt_25bkg_4itr_bkgnoter0_indirect0_onlyindirect0_close0_ban1_hypEqlInsp_manualTitleSuggester_clearSplit_pastfdbkmodified_hypSuggestor"
ckpt_tomato_base_25_50 = "chatgpt_25bkg_4itr_bkgnoter25_indirect0_onlyindirect0_close0_ban1_hypEqlInsp_manualTitleSuggester_clearSplit_pastfdbkmodified_hypSuggestor"
## Tomato-past-future ckpts
ckpt_tomato_pf_0_25 = "chatgpt_25bkg_4itr_bkgnoter0_indirect1_onlyindirect0_close0_ban0_hypEqlInsp_manualTitleSuggester_clearSplit_pastfdbkmodified_hypSuggestor"
ckpt_tomato_pf_25_50 = "chatgpt_25bkg_4itr_bkgnoter25_indirect1_onlyindirect0_close0_ban0_hypEqlInsp_manualTitleSuggester_clearSplit_pastfdbkmodified_hypSuggestor"
gpt4_scores_baseline2 = load_gpt4_scores([ckpt_baseline2_0_50], [[0,50]], 0, [0])
gpt4_scores_tomato_base = load_gpt4_scores([ckpt_tomato_base_0_25, ckpt_tomato_base_25_50], [[0,5], [5,25],[25,50]], 0, [0,2,4])
gpt4_scores_tomato_pf_onlyf = load_gpt4_scores([ckpt_tomato_pf_0_25, ckpt_tomato_pf_25_50], [[0,5], [5,25],[25,50]], 0, [4])
gpt4_scores_tomato_pf_bothpf = load_gpt4_scores([ckpt_tomato_pf_0_25, ckpt_tomato_pf_25_50], [[0,5], [5,25],[25,50]], 1, [0,2,4])
assert len(gpt4_scores_baseline2) == 50
assert len(gpt4_scores_tomato_base) == 50
assert len(gpt4_scores_tomato_pf_onlyf) == 50
assert len(gpt4_scores_tomato_pf_bothpf) == 50
full_list_of_validness_gpt4, full_list_of_novelty_gpt4, full_list_of_helpfulness_gpt4 = unify_gpt4_scores([gpt4_scores_baseline2, gpt4_scores_tomato_base, gpt4_scores_tomato_pf_onlyf, gpt4_scores_tomato_pf_bothpf])
print("len(full_list_of_validness_gpt4): ", len(full_list_of_validness_gpt4))
def get_consistency_between_one_expert_file_and_gpt4(expert_file, full_list_of_validness_gpt4, full_list_of_novelty_gpt4, full_list_of_helpfulness_gpt4, if_hard_consistency):
full_list_of_validness_expert, full_list_of_novelty_expert, full_list_of_helpfulness_expert, len_evaluated_effective_data = read_expert_scores(expert_file)
consist_valid = consistency(full_list_of_validness_gpt4, full_list_of_validness_expert, if_hard_consistency)
consist_novel = consistency(full_list_of_novelty_gpt4, full_list_of_novelty_expert, if_hard_consistency)
consist_helpf = consistency(full_list_of_helpfulness_gpt4, full_list_of_helpfulness_expert, if_hard_consistency)
print("For expert file: {}, \nconsist_valid: {:.3f}; consist_novel: {:.3f}; consist_helpf: {:.3f}; len_evaluated_effective_data: {}\n".format(expert_file, consist_valid, consist_novel, consist_helpf, len_evaluated_effective_data))
return consist_valid, consist_novel, consist_helpf, len_evaluated_effective_data
# Average consistency scores across files
consist_valid_file0, consist_novel_file0, consist_helpf_file0, len_evaluated_data_file0 = get_consistency_between_one_expert_file_and_gpt4(expert_file_0, full_list_of_validness_gpt4, full_list_of_novelty_gpt4, full_list_of_helpfulness_gpt4, if_hard_consistency)
consist_valid_file1, consist_novel_file1, consist_helpf_file1, len_evaluated_data_file1 = get_consistency_between_one_expert_file_and_gpt4(expert_file_1, full_list_of_validness_gpt4, full_list_of_novelty_gpt4, full_list_of_helpfulness_gpt4, if_hard_consistency)
consist_valid = (consist_valid_file0*len_evaluated_data_file0 + consist_valid_file1*len_evaluated_data_file1) / (len_evaluated_data_file0+len_evaluated_data_file1)
consist_novel = (consist_novel_file0*len_evaluated_data_file0 + consist_novel_file1*len_evaluated_data_file1) / (len_evaluated_data_file0+len_evaluated_data_file1)
consist_helpf = (consist_helpf_file0*len_evaluated_data_file0 + consist_helpf_file1*len_evaluated_data_file1) / (len_evaluated_data_file0+len_evaluated_data_file1)
len_evaluated_data = len_evaluated_data_file0 + len_evaluated_data_file1
print("if_hard_consistency: ", if_hard_consistency)
print("Overall, consist_valid: {:.3f}; consist_novel: {:.3f}; consist_helpf: {:.3f}; len_evaluated_data: {}".format(consist_valid, consist_novel, consist_helpf, len_evaluated_data))
if __name__ == "__main__":
main()
print("finished")