-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathcrypto.c
1537 lines (1290 loc) · 49.5 KB
/
crypto.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*******************************************************************************
* (c) 2019 Zondax GmbH
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
********************************************************************************/
#include "crypto.h"
#include "constants.h"
#include "coin.h"
#include "zxmacros.h"
#include "base58.h"
#include "rslib.h"
#include "bech32.h"
#include "nvdata.h"
#include "sighash.h"
#include "index_sapling.h"
#include "parser_impl.h"
#include "parser_common.h"
#include "chacha.h"
#include "common/app_main.h"
uint32_t hdPath[HDPATH_LEN_DEFAULT];
bool isTestnet() {
return hdPath[0] == HDPATH_0_TESTNET &&
hdPath[1] == HDPATH_1_TESTNET;
}
#if defined(TARGET_NANOS) || defined(TARGET_NANOX)
#include "cx.h"
typedef struct {
uint8_t publicKey[PK_LEN_SECP256K1];
uint8_t address[50];
} __attribute__((packed)) answer_t;
void ripemd160(uint8_t *in, uint16_t inLen, uint8_t *out) {
cx_ripemd160_t rip160;
cx_ripemd160_init(&rip160);
cx_hash(&rip160.header, CX_LAST, in, inLen, out, CX_RIPEMD160_SIZE);
}
// According to 5.6 Encodings of Addresses and Keys
typedef struct {
// [ADDRESS ]
// [EXTENDED RIPEMD-160][Checksum 4-bytes]
// [EXTENDED RIPEMD-160][Checksum-------------------------]
// [version][RIPEMD-160]
union {
uint8_t address[VERSION_SIZE + CX_RIPEMD160_SIZE + CHECKSUM_SIZE];
struct {
uint8_t extended_ripe[VERSION_SIZE + CX_RIPEMD160_SIZE];
uint8_t sha256_checksum[CX_SHA256_SIZE];
};
union {
// [EXTENDED RIPEMD-160]
// [version][RIPEMD-160]
struct {
uint8_t version[VERSION_SIZE];
uint8_t ripe_sha256_pk[CX_RIPEMD160_SIZE];
};
};
};
// Temporary buffers
union {
uint8_t sha256_pk[CX_SHA256_SIZE];
uint8_t sha256_extended_ripe[CX_SHA256_SIZE];
};
} __attribute__((packed)) address_temp_t;
zxerr_t crypto_fillAddress_secp256k1(uint8_t *buffer, uint16_t buffer_len, uint16_t *replyLen) {
if (buffer_len < sizeof(answer_t)) {
*replyLen = 0;
return zxerr_unknown;
}
zemu_log_stack("crypto_fillAddress_secp256k1");
MEMZERO(buffer, buffer_len);
answer_t *const answer = (answer_t *) buffer;
crypto_extractPublicKey(hdPath, answer->publicKey, sizeof_field(answer_t, publicKey));
address_temp_t address_temp;
// extended-ripemd-160 = [version][ripemd-160(sha256(pk))]
address_temp.version[0] = VERSION_P2PKH >> 8;
address_temp.version[1] = VERSION_P2PKH & 0xFF;
cx_hash_sha256(answer->publicKey, PK_LEN_SECP256K1, address_temp.sha256_pk, CX_SHA256_SIZE); // SHA256
ripemd160(address_temp.sha256_pk, CX_SHA256_SIZE, address_temp.ripe_sha256_pk); // RIPEMD-160
// checksum = sha256(sha256(extended-ripe))
cx_hash_sha256(address_temp.extended_ripe, CX_RIPEMD160_SIZE + VERSION_SIZE, address_temp.sha256_extended_ripe, CX_SHA256_SIZE);
cx_hash_sha256(address_temp.sha256_extended_ripe, CX_SHA256_SIZE, address_temp.sha256_checksum, CX_SHA256_SIZE);
// 7. 25 bytes BTC address = [extended ripemd-160][checksum]
// Encode as base58
size_t outLen = sizeof_field(answer_t, address);
int err = encode_base58(address_temp.address, VERSION_SIZE + CX_RIPEMD160_SIZE + CHECKSUM_SIZE, answer->address, &outLen);
if(err != 0){
return zxerr_unknown;
}
*replyLen = PK_LEN_SECP256K1 + outLen;
return zxerr_ok;
}
void crypto_extractPublicKey(const uint32_t path[HDPATH_LEN_DEFAULT], uint8_t *pubKey, uint16_t pubKeyLen) {
cx_ecfp_public_key_t cx_publicKey;
cx_ecfp_private_key_t cx_privateKey;
uint8_t privateKeyData[SK_SECP256K1_SIZE];
if (pubKeyLen < PK_LEN_SECP256K1) {
return;
}
BEGIN_TRY
{
TRY {
os_perso_derive_node_bip32(CX_CURVE_256K1,
path,
HDPATH_LEN_DEFAULT,
privateKeyData, NULL);
cx_ecfp_init_private_key(CX_CURVE_256K1, privateKeyData, SK_SECP256K1_SIZE, &cx_privateKey);
cx_ecfp_init_public_key(CX_CURVE_256K1, NULL, 0, &cx_publicKey);
cx_ecfp_generate_pair(CX_CURVE_256K1, &cx_publicKey, &cx_privateKey, 1);
}
FINALLY {
MEMZERO(&cx_privateKey, sizeof(cx_privateKey));
MEMZERO(privateKeyData, SK_SECP256K1_SIZE);
}
}
END_TRY;
// Format pubkey
for (int i = 0; i < PUB_KEY_SIZE; i++) {
pubKey[i] = cx_publicKey.W[64 - i];
}
cx_publicKey.W[0] = cx_publicKey.W[64] & 1 ? 0x03 : 0x02; // "Compress" public key in place
if ((cx_publicKey.W[PUB_KEY_SIZE] & 1) != 0) {
pubKey[PUB_KEY_SIZE - 1] |= 0x80;
}
memcpy(pubKey, cx_publicKey.W, PK_LEN_SECP256K1);
}
void crypto_fillSaplingSeed(uint8_t *sk) {
// Get seed from Ed25519
MEMZERO(sk, ED25519_SK_SIZE);
//fixme: make sure this path is not used somewhere else for signing
// Generate randomness using a fixed path related to the device mnemonic
const uint32_t path[HDPATH_LEN_DEFAULT] = {
0x8000002c,
0x80000085,
MASK_HARDENED,
MASK_HARDENED,
MASK_HARDENED,
};
os_perso_derive_node_bip32_seed_key(HDW_NORMAL, CX_CURVE_Ed25519,
path, HDPATH_LEN_DEFAULT,
sk,
NULL,
NULL, 0);
}
zxerr_t crypto_extracttx_sapling(uint8_t *buffer, uint16_t bufferLen, const uint8_t *txdata, const uint16_t txdatalen) {
zemu_log_stack("crypto_extracttxdata_sapling");
MEMZERO(buffer, bufferLen);
uint8_t t_in_len = *txdata;
uint8_t t_out_len = *(txdata+1);
uint8_t spend_len = *(txdata+2);
uint8_t output_len = *(txdata+3);
transaction_reset();
if((spend_len > 0 && output_len < 2) || (spend_len == 0 && output_len == 1)){
return zxerr_unknown;
}
if(txdatalen < 4 || txdatalen - 4 != t_in_len * T_IN_INPUT_LEN + t_out_len * T_OUT_INPUT_LEN + spend_len * SPEND_INPUT_LEN + output_len * OUTPUT_INPUT_LEN){
return zxerr_unknown;
}
if (t_in_len == 0 && t_out_len == 0 && spend_len == 0 && output_len == 0){
return zxerr_unknown;
}
uint8_t *start = (uint8_t *)txdata;
start += 4;
parser_context_t pars_ctx;
parser_error_t pars_err;
for(int i = 0; i < t_in_len; i++){
uint32_t *path = (uint32_t *)(start + INDEX_INPUT_TIN_PATH);
uint8_t *script = (uint8_t *)(start + INDEX_INPUT_TIN_SCRIPT);
pars_ctx.offset = 0;
pars_ctx.buffer = start + INDEX_INPUT_TIN_VALUE;
pars_ctx.bufferLen = 8;
uint64_t v = 0;
pars_err = _readUInt64(&pars_ctx, &v);
if (pars_err != parser_ok){
return zxerr_unknown;
}
zxerr_t err = t_inlist_append_item(path, script, v);
if (err != zxerr_ok){
return zxerr_unknown;
}
start += T_IN_INPUT_LEN;
}
for(int i = 0; i < t_out_len; i++){
uint8_t *addr = (uint8_t *)(start + INDEX_INPUT_TOUT_ADDR);
pars_ctx.offset = 0;
pars_ctx.buffer = start + INDEX_INPUT_TOUT_VALUE;
pars_ctx.bufferLen = 8;
uint64_t v = 0;
pars_err = _readUInt64(&pars_ctx, &v);
if (pars_err != parser_ok){
return zxerr_unknown;
}
zxerr_t err = t_outlist_append_item(addr, v);
if (err != zxerr_ok){
return zxerr_unknown;
}
start += T_OUT_INPUT_LEN;
}
for(int i = 0; i < spend_len; i++){
pars_ctx.offset = 0;
pars_ctx.buffer = start + INDEX_INPUT_SPENDPOS;
pars_ctx.bufferLen = 4;
uint32_t p = 0;
pars_err = _readUInt32(&pars_ctx, &p);
if (pars_err != parser_ok){
return zxerr_unknown;
}
pars_ctx.offset = 0;
pars_ctx.buffer = start + INDEX_INPUT_INPUTVALUE;
pars_ctx.bufferLen = 8;
uint64_t v = 0;
pars_err = _readUInt64(&pars_ctx, &v);
if (pars_err != parser_ok){
return zxerr_unknown;
}
uint8_t *div = start + INDEX_INPUT_INPUTDIV;
uint8_t *pkd = start + INDEX_INPUT_INPUTPKD;
uint8_t rnd1[RND_SIZE];
uint8_t rnd2[RND_SIZE];
random_fr(rnd1);
random_fr(rnd2);
zxerr_t err = spendlist_append_item(p,v,div, pkd, rnd1,rnd2);
if (err != zxerr_ok){
return zxerr_unknown;
}
start += SPEND_INPUT_LEN;
}
for(int i = 0; i < output_len; i++){
uint8_t *div = start + INDEX_INPUT_OUTPUTDIV;
uint8_t *pkd = start + INDEX_INPUT_OUTPUTPKD;
pars_ctx.offset = 0;
pars_ctx.buffer = start + INDEX_INPUT_OUTPUTVALUE;
pars_ctx.bufferLen = 8;
uint64_t v = 0;
pars_err = _readUInt64(&pars_ctx, &v);
if (pars_err != parser_ok){
return zxerr_unknown;
}
uint8_t *memotype = start + INDEX_INPUT_OUTPUTMEMO;
uint8_t *ovk = start + INDEX_INPUT_OUTPUTOVK;
if(ovk[0] != 0x00 && ovk[0] != 0x01){
zemu_log_stack("invalid OVK SET");
return zxerr_unknown;
}
uint8_t hash_seed[OVK_SET_SIZE];
if(ovk[0] == 0x00){
MEMZERO(hash_seed,OVK_SET_SIZE);
cx_rng(hash_seed + 1, OVK_SIZE);
ovk = hash_seed;
}
uint8_t rnd1[RND_SIZE];
uint8_t rnd2[RND_SIZE];
random_fr(rnd1);
cx_rng(rnd2, RND_SIZE);
zxerr_t err = outputlist_append_item(div, pkd, v, *memotype, ovk, rnd1, rnd2);
if (err != zxerr_ok){
return zxerr_unknown;
}
start += OUTPUT_INPUT_LEN;
}
uint64_t value_flash = get_valuebalance();
if (value_flash != 1000){
return zxerr_unknown;
}
if (spend_len > 0){
set_state(STATE_PROCESSED_INPUTS); //need both spend info and output info (as spend > 0 => output >= 2)
}else if (output_len > 0){
set_state(STATE_PROCESSED_SPEND_EXTRACTIONS); //we can have shielded outputs only
}else{
set_state(STATE_PROCESSED_ALL_EXTRACTIONS); //We can have transparent inputs/outputs only
}
return zxerr_ok; //some code for all_good
}
typedef struct {
union {
// STEP 1
struct {
uint8_t dk[DK_SIZE];
uint8_t zip32_seed[ZIP32_SEED_SIZE];
uint8_t sk[ED25519_SK_SIZE];
} step1;
struct {
uint8_t dk[DK_SIZE];
uint8_t ask[ASK_SIZE];
uint8_t nsk[NSK_SIZE];
} step2;
};
} tmp_spendinfo_s;
zxerr_t crypto_extract_spend_proofkeyandrnd(uint8_t *buffer, uint16_t bufferLen){
if(!spendlist_more_extract()){
return zxerr_unknown;
}
if(get_state() != STATE_PROCESSED_INPUTS){
return zxerr_unknown;
}
uint8_t *out = (uint8_t *) buffer;
MEMZERO(out, bufferLen);
const spend_item_t *next = spendlist_extract_next();
if (next == NULL){
return zxerr_unknown;
}
tmp_spendinfo_s tmp;
MEMZERO(&tmp, sizeof(tmp_spendinfo_s));
BEGIN_TRY
{
TRY
{
crypto_fillSaplingSeed(tmp.step1.zip32_seed);
CHECK_APP_CANARY();
zip32_child(tmp.step1.zip32_seed, tmp.step2.dk, tmp.step2.ask, out + AK_SIZE, next->path);
CHECK_APP_CANARY();
}
FINALLY
{
// do something here?
}
}
END_TRY;
CHECK_APP_CANARY();
ask_to_ak(tmp.step2.ask,out);
MEMZERO(&tmp, sizeof(tmp_spendinfo_s));
CHECK_APP_CANARY();
MEMCPY(out+AK_SIZE+NSK_SIZE, next->rcm, RCM_SIZE);
MEMCPY(out+AK_SIZE+NSK_SIZE+RCM_SIZE, next->alpha,ALPHA_SIZE);
if(!spendlist_more_extract()){
set_state(STATE_PROCESSED_SPEND_EXTRACTIONS);
}
return zxerr_ok;
}
zxerr_t crypto_extract_output_rnd(uint8_t *buffer, uint16_t bufferLen, uint16_t *replyLen){
if(!outputlist_more_extract()){
return zxerr_unknown;
}
if(get_state() != STATE_PROCESSED_SPEND_EXTRACTIONS){
return zxerr_unknown;
}
uint8_t *out = (uint8_t *) buffer;
MEMZERO(out, bufferLen);
const output_item_t *next = outputlist_extract_next();
if (next == NULL){
return zxerr_unknown;
}
MEMCPY(out, next->rcmvalue, RCM_V_SIZE);
MEMCPY(out+RCM_V_SIZE, next->rseed, RSEED_SIZE);
if(next->ovk[0] == 0x00){
MEMCPY(out+RCM_V_SIZE + RSEED_SIZE, next->ovk + 1, OVK_SIZE);
*replyLen = RCM_V_SIZE + RSEED_SIZE + OVK_SIZE;
}else{
*replyLen = RCM_V_SIZE + RSEED_SIZE;
}
if(!outputlist_more_extract()){
set_state(STATE_PROCESSED_ALL_EXTRACTIONS);
}
return zxerr_ok;
}
zxerr_t crypto_check_prevouts(uint8_t *buffer, uint16_t bufferLen, const uint8_t *txdata, const uint16_t txdatalen){
zemu_log_stack("crypto_checkprevoouts_sapling");
MEMZERO(buffer, bufferLen);
if(get_state() != STATE_CHECKING_ALL_TXDATA){
return zxerr_unknown;
}
uint8_t hash[HASH_SIZE];
prevouts_hash(txdata,hash);
if(MEMCMP(hash, txdata + start_sighashdata() + INDEX_HASH_PREVOUTSHASH, HASH_SIZE) != 0){
return zxerr_unknown;
}
return zxerr_ok;
}
zxerr_t crypto_check_sequence(uint8_t *buffer, uint16_t bufferLen, const uint8_t *txdata, const uint16_t txdatalen){
zemu_log_stack("crypto_checksequence_sapling");
MEMZERO(buffer, bufferLen);
if(get_state() != STATE_CHECKING_ALL_TXDATA){
return zxerr_unknown;
}
uint8_t hash[HASH_SIZE];
sequence_hash(txdata, hash);
if(MEMCMP(hash, txdata + start_sighashdata() + INDEX_HASH_SEQUENCEHASH, HASH_SIZE) != 0){
return zxerr_unknown;
}
return zxerr_ok;
}
zxerr_t crypto_check_outputs(uint8_t *buffer, uint16_t bufferLen, const uint8_t *txdata, const uint16_t txdatalen){
zemu_log_stack("crypto_checkoutputs_sapling");
if(length_t_in_data() + length_spenddata() + length_outputdata() + LENGTH_HASH_DATA != txdatalen){
return zxerr_unknown;
}
if(get_state() != STATE_CHECKING_ALL_TXDATA){
return zxerr_unknown;
}
MEMZERO(buffer, bufferLen);
uint8_t hash[HASH_SIZE];
outputs_hash(hash);
if(MEMCMP(hash, txdata + start_sighashdata() + INDEX_HASH_OUTPUTSHASH, HASH_SIZE) != 0){
return zxerr_unknown;
}
return zxerr_ok;
}
zxerr_t crypto_check_joinsplits(uint8_t *buffer, uint16_t bufferLen, const uint8_t *txdata, const uint16_t txdatalen){
zemu_log_stack("crypto_checkjoinsplits_sapling");
MEMZERO(buffer, bufferLen);
if(get_state() != STATE_CHECKING_ALL_TXDATA){
return zxerr_unknown;
}
uint8_t hash[HASH_SIZE];
MEMZERO(hash,sizeof(hash));
if(MEMCMP(hash, txdata + start_sighashdata() + INDEX_HASH_JOINSPLITSHASH, HASH_SIZE) != 0){
return zxerr_unknown;
}
return zxerr_ok;
}
zxerr_t crypto_check_valuebalance(uint8_t *buffer, uint16_t bufferLen, const uint8_t *txdata, const uint16_t txdatalen){
zemu_log_stack("crypto_checkvaluebalance_sapling");
MEMZERO(buffer, bufferLen);
if(get_state() != STATE_CHECKING_ALL_TXDATA){
return zxerr_unknown;
}
parser_context_t pars_ctx;
parser_error_t pars_err;
pars_ctx.offset = 0;
pars_ctx.buffer = txdata + start_sighashdata() + INDEX_HASH_VALUEBALANCE;
pars_ctx.bufferLen = 8;
uint64_t v = 0;
pars_err = _readUInt64(&pars_ctx, &v);
if (pars_err != parser_ok){
return 0;
}
uint64_t valuebalance = get_valuebalance();
uint8_t *value_flash = (uint8_t *)&valuebalance;
if(MEMCMP(txdata + start_sighashdata() + INDEX_HASH_VALUEBALANCE, value_flash, 8) != 0){
return zxerr_unknown;
}
return zxerr_ok;
}
typedef struct {
union {
struct {
uint8_t pedersen_input[PEDERSEN_INPUT_SIZE];
};
struct {
uint8_t pedersen_hash[HASH_SIZE];
};
struct {
uint8_t ncm_full[NOTE_COMMITMENT_SIZE];
};
struct {
uint8_t nf[NULLIFIER_SIZE];
};
struct {
uint8_t spend_hash[HASH_SIZE];
};
};
} tmp_buf_checkspend;
typedef struct {
union {
// STEP 1
struct {
uint8_t zip32_seed[ZIP32_SEED_SIZE];
} step1;
struct {
uint8_t ask[ASK_SIZE];
uint8_t nsk[NSK_SIZE];
} step2;
struct {
uint8_t rk[PUB_KEY_SIZE];
uint8_t nsk[NSK_SIZE];
} step3;
struct {
uint8_t cv[VALUE_COMMITMENT_SIZE];
uint8_t nsk[NSK_SIZE];
} step4;
struct {
uint8_t gd[GD_SIZE];
uint8_t nsk[NSK_SIZE];
} step5;
struct {
uint8_t gd[GD_SIZE];
uint8_t nk[NSK_SIZE];
} step6;
};
} tmp_checkspend;
zxerr_t crypto_checkspend_sapling(uint8_t *buffer, uint16_t bufferLen, const uint8_t *txdata, const uint16_t txdatalen) {
MEMZERO(buffer, bufferLen);
if(length_t_in_data() + length_spenddata() + length_outputdata() + LENGTH_HASH_DATA != txdatalen){
return zxerr_unknown;
}
if(get_state() != STATE_CHECKING_ALL_TXDATA){
return zxerr_unknown;
}
zemu_log_stack("crypto_checkspend_sapling");
uint8_t *out = buffer;
tmp_buf_checkspend *const tmp_buf = (tmp_buf_checkspend *) buffer;
MEMZERO(tmp_buf, bufferLen);
uint8_t *start_spenddata = (uint8_t *)(txdata + length_t_in_data() + length_spend_old_data());
uint8_t *start_spendolddata = (uint8_t *)(txdata + length_t_in_data());
tmp_checkspend tmp;
MEMZERO(&tmp, sizeof(tmp_checkspend));
//the path in zip32 is [FIRST_VALUE, COIN_TYPE, p] where p is u32 and last part of hdPath
BEGIN_TRY
{
TRY
{
// Temporarily get sk from Ed25519
CHECK_APP_CANARY();
for(uint8_t i = 0; i < spendlist_len(); i++){
crypto_fillSaplingSeed(tmp.step1.zip32_seed);
const spend_item_t *item = spendlist_retrieve_item(i);
if (item == NULL){
CLOSE_TRY;
return zxerr_unknown;
}
zip32_child_ask_nsk(tmp.step1.zip32_seed, tmp.step2.ask, tmp.step2.nsk, item->path);
randomized_secret(tmp.step2.ask, (uint8_t *)item->alpha, tmp.step2.ask);
sk_to_pk(tmp.step2.ask, tmp.step3.rk);
if(MEMCMP(tmp.step3.rk, start_spenddata + INDEX_SPEND_RK + i * SPEND_TX_LEN,PUB_KEY_SIZE) != 0){
CLOSE_TRY;
MEMZERO(&tmp, sizeof(tmp_checkspend));
return zxerr_unknown;
}
compute_value_commitment(item->value,item->rcm,tmp.step4.cv);
if (MEMCMP(tmp.step4.cv, start_spenddata + INDEX_SPEND_VALUECMT + i *SPEND_TX_LEN,VALUE_COMMITMENT_SIZE) != 0){
MEMZERO(&tmp, sizeof(tmp_checkspend));
MEMZERO(out,bufferLen);
CLOSE_TRY;
return zxerr_unknown;
}
group_hash_from_div(item->div, tmp.step5.gd);
prepare_input_notecmt(item->value, tmp.step5.gd, item->pkd, tmp_buf->pedersen_input);
pedersen_hash_73bytes(tmp_buf->pedersen_input,tmp_buf->pedersen_hash);
compute_note_commitment_fullpoint(tmp_buf->pedersen_hash, start_spendolddata + INDEX_SPEND_OLD_RCM + i * SPEND_OLD_TX_LEN);
nsk_to_nk(tmp.step5.nsk,tmp.step6.nk);
uint64_t notepos = 0;
{
parser_context_t pars_ctx;
parser_error_t pars_err;
pars_ctx.offset = 0;
pars_ctx.buffer = start_spendolddata + INDEX_SPEND_OLD_NOTEPOS + i * SPEND_OLD_TX_LEN;
pars_ctx.bufferLen = 8;
pars_err = _readUInt64(&pars_ctx, ¬epos);
if (pars_err != parser_ok){
CLOSE_TRY;
return zxerr_unknown;
}
}
//void compute_nullifier(uint8_t *ncmptr, uint64_t pos, uint8_t *nkptr, uint8_t *outputptr);
compute_nullifier(tmp_buf->ncm_full, notepos, tmp.step6.nk, tmp_buf->nf);
if (MEMCMP(tmp_buf->nf, start_spenddata + INDEX_SPEND_NF + i * SPEND_TX_LEN, NULLIFIER_SIZE) != 0){
//maybe spendlist_reset();
MEMZERO(out, bufferLen);
MEMZERO(&tmp, sizeof(tmp_checkspend));
CLOSE_TRY;
return zxerr_unknown;
}
MEMZERO(out, bufferLen);
MEMZERO(&tmp, sizeof(tmp_checkspend));
}
MEMZERO(&tmp, sizeof(tmp_checkspend));
}
FINALLY
{
// Not necessary, but just in case
MEMZERO(out, bufferLen);
MEMZERO(&tmp, sizeof(tmp_checkspend));
}
}
END_TRY;
MEMZERO(out, bufferLen);
if (spendlist_len() > 0){
shielded_spend_hash(start_spenddata, length_spend_new_data(), tmp_buf->spend_hash);
}
if(MEMCMP(tmp_buf->spend_hash, txdata + start_sighashdata() + INDEX_HASH_SHIELDEDSPENDHASH, HASH_SIZE) != 0){
return zxerr_unknown;
}
MEMZERO(out,bufferLen);
return zxerr_ok; //or some code for ok
}
typedef struct {
uint8_t shielded_output_hash[HASH_SIZE];
} tmp_buf_checkoutput;
typedef struct {
union {
struct {
uint8_t gd[GD_SIZE]; //computed from receiver diversifier
uint8_t pkd[PKD_SIZE]; //get this from host and show on screen for verification
} step2;
struct {
uint8_t pedersen_input[PEDERSEN_INPUT_SIZE];
} step3;
struct{
uint8_t notecommitment[NOTE_COMMITMENT_SIZE];
uint8_t valuecommitment[VALUE_COMMITMENT_SIZE];
} step4;
};
} tmp_checkoutput;
zxerr_t crypto_checkoutput_sapling(uint8_t *buffer, uint16_t bufferLen, const uint8_t *txdata, const uint16_t txdatalen) {
MEMZERO(buffer, bufferLen);
if(get_state() != STATE_CHECKING_ALL_TXDATA){
return zxerr_unknown;
}
if(length_t_in_data() + length_spenddata() + length_outputdata() + LENGTH_HASH_DATA != txdatalen){
return zxerr_unknown;
}
uint8_t *start_outputdata = (uint8_t *) (txdata + length_t_in_data() + length_spenddata());
zemu_log_stack("crypto_checkoutput_sapling");
uint8_t *out = (uint8_t *) buffer;
MEMZERO(out, bufferLen);
tmp_checkoutput ncm;
MEMZERO(&ncm, sizeof(tmp_checkoutput));
uint8_t rcm[RCM_SIZE];
//the path in zip32 is [FIRST_VALUE, COIN_TYPE, p] where p is u32 and last part of hdPath
BEGIN_TRY
{
TRY
{
for(uint8_t i = 0; i < outputlist_len(); i++){
const output_item_t *item = outputlist_retrieve_item(i);
if (item == NULL){
CLOSE_TRY;
return zxerr_unknown;
}
group_hash_from_div(item->div, ncm.step2.gd);
prepare_input_notecmt(item->value, ncm.step2.gd, item->pkd, ncm.step3.pedersen_input);
pedersen_hash_73bytes(ncm.step3.pedersen_input,ncm.step4.notecommitment);
rseed_get_rcm(item->rseed,rcm);
compute_note_commitment(ncm.step4.notecommitment,rcm);
compute_value_commitment(item->value, item->rcmvalue, ncm.step4.valuecommitment);
if (MEMCMP(ncm.step4.valuecommitment, start_outputdata + INDEX_OUTPUT_VALUECMT + i * OUTPUT_TX_LEN,VALUE_COMMITMENT_SIZE) != 0){
MEMZERO(&ncm, sizeof(tmp_checkoutput));
CLOSE_TRY;
return zxerr_unknown;
}
if(MEMCMP(ncm.step4.notecommitment, start_outputdata + INDEX_OUTPUT_NOTECMT + i * OUTPUT_TX_LEN,NOTE_COMMITMENT_SIZE) != 0){
MEMZERO(&ncm, sizeof(tmp_checkoutput));
CLOSE_TRY;
return zxerr_unknown;
}
MEMZERO(&ncm, sizeof(tmp_checkoutput));
}
MEMZERO(&ncm, sizeof(tmp_checkoutput));
}
FINALLY
{
// Not necessary, but just in case
MEMZERO(&ncm, sizeof(tmp_checkoutput));
}
}
END_TRY;
tmp_buf_checkoutput *const tmp_buf = (tmp_buf_checkoutput *) buffer;
MEMZERO(out, bufferLen);
if (outputlist_len() > 0){
shielded_output_hash(start_outputdata, length_outputdata(), tmp_buf->shielded_output_hash);
}
if(MEMCMP(tmp_buf->shielded_output_hash, txdata + start_sighashdata() + INDEX_HASH_SHIELDEDOUTPUTHASH, HASH_SIZE) != 0){
return zxerr_unknown;
}
return zxerr_ok; //or some code for ok
}
typedef struct {
union {
// STEP 1
struct { // MAX SIZE --> 160
uint8_t dummy[MAX_SIZE - EPK_SIZE - ESK_SIZE];
uint8_t epk[EPK_SIZE]; //computed from receiver diversifier
uint8_t esk[ESK_SIZE];
} step1;
struct{
uint8_t chachanonce[CHACHA_NONCE_SIZE];
uint8_t compactout[COMPACT_OUT_SIZE];
uint8_t sharedkey[SHARED_KEY_SIZE];
uint8_t epk[EPK_SIZE];
uint8_t esk[ESK_SIZE];
} step2;
struct{
uint8_t dummy[MAX_SIZE - OVK_SIZE - VALUE_COMMITMENT_SIZE - NOTE_COMMITMENT_SIZE - EPK_SIZE - ESK_SIZE];
uint8_t ovk[OVK_SIZE];
uint8_t valuecmt[VALUE_COMMITMENT_SIZE];
uint8_t notecmt[NOTE_COMMITMENT_SIZE];
uint8_t epk[EPK_SIZE];
uint8_t esk[ESK_SIZE];
}step3;
struct{
uint8_t dummy[MAX_SIZE - PRF_INPUT_SIZE - ESK_SIZE];
uint8_t prfinput[PRF_INPUT_SIZE];
uint8_t esk[ESK_SIZE];
}step4;
struct{
uint8_t outkey[OUT_KEY_SIZE];
uint8_t dummy[MAX_SIZE - OUT_KEY_SIZE - PKD_SIZE - ESK_SIZE];
uint8_t pkd[PKD_SIZE];
uint8_t esk[ESK_SIZE];
}step5;
struct{
uint8_t outkey[OUT_KEY_SIZE];
uint8_t dummy[MAX_SIZE - OUT_KEY_SIZE - ENC_CIPHER_SIZE - CHACHA_NONCE_SIZE];
uint8_t chachanonce[CHACHA_NONCE_SIZE];
uint8_t encciph[ENC_CIPHER_SIZE];
}step6;
struct{
uint8_t hashseed[OVK_SET_SIZE];
uint8_t outkey[OUT_KEY_SIZE];
uint8_t encciph_part1[ENC_CIPHER_HALVE_SIZE];
uint8_t encciph_part2[ENC_CIPHER_HALVE_SIZE];
uint8_t chachanonce[CHACHA_NONCE_SIZE];
}step3b;
struct{
uint8_t hashseed[OVK_SET_SIZE];
uint8_t outkey[OUT_KEY_SIZE];
uint8_t encciph[ENC_CIPHER_SIZE];
uint8_t chachanonce[CHACHA_NONCE_SIZE];
}step4b;
};
} tmp_enc;
zxerr_t crypto_checkencryptions_sapling(uint8_t *buffer, uint16_t bufferLen, const uint8_t *txdata, const uint16_t txdatalen) {
MEMZERO(buffer, bufferLen);
uint8_t *out = (uint8_t *) buffer;
MEMZERO(out, bufferLen);
tmp_enc *tmp = (tmp_enc *)buffer;
MEMZERO(tmp, sizeof(tmp_enc));
zemu_log_stack("crypto_checkencryptions_sapling");
uint8_t *start_outputdata = (uint8_t *)(txdata + length_t_in_data() + length_spenddata());
//the path in zip32 is [FIRST_VALUE, COIN_TYPE, p] where p is u32 and last part of hdPath
for(uint8_t i = 0; i < outputlist_len(); i++){
const output_item_t *item = outputlist_retrieve_item(i);
if (item == NULL){
MEMZERO(out, bufferLen);
return zxerr_unknown;
}
rseed_get_esk(item->rseed,tmp->step1.esk);
CHECK_APP_CANARY();
get_epk(tmp->step1.esk, (uint8_t *) item->div, tmp->step1.epk);
CHECK_APP_CANARY();
if (MEMCMP(tmp->step1.epk, start_outputdata + INDEX_OUTPUT_EPK + i * OUTPUT_TX_LEN, EPK_SIZE) != 0){
MEMZERO(out, bufferLen);
return zxerr_unknown;
}
ka_to_key(tmp->step1.esk, (uint8_t *) item->pkd, tmp->step1.epk, tmp->step2.sharedkey);
CHECK_APP_CANARY();
prepare_enccompact_input((uint8_t *) item->div, item->value, (uint8_t *) item->rseed, item->memotype, tmp->step2.compactout);
CHECK_APP_CANARY();
MEMZERO(tmp->step2.chachanonce,CHACHA_NONCE_SIZE);
chacha(tmp->step2.compactout, tmp->step2.compactout, COMPACT_OUT_SIZE, tmp->step2.sharedkey, tmp->step2.chachanonce,1);
CHECK_APP_CANARY();
if (MEMCMP(tmp->step2.compactout, start_outputdata + INDEX_OUTPUT_ENC + i * OUTPUT_TX_LEN, COMPACT_OUT_SIZE) != 0){
MEMZERO(out, bufferLen);
return zxerr_unknown;
}
if(item->ovk[0] != 0x00){
zemu_log_stack("OVK SET");
MEMCPY(tmp->step3.ovk, item->ovk + 1, OVK_SIZE);
MEMCPY(tmp->step3.valuecmt, start_outputdata + INDEX_OUTPUT_VALUECMT + i* OUTPUT_TX_LEN,VALUE_COMMITMENT_SIZE);
MEMCPY(tmp->step3.notecmt, start_outputdata + INDEX_OUTPUT_NOTECMT + i* OUTPUT_TX_LEN,NOTE_COMMITMENT_SIZE);
blake2b_prf(tmp->step4.prfinput, tmp->step5.outkey);
CHECK_APP_CANARY();
MEMCPY(tmp->step5.pkd, item->pkd, PKD_SIZE);
MEMZERO(tmp->step6.chachanonce,CHACHA_NONCE_SIZE);
chacha(tmp->step6.encciph, tmp->step6.encciph, ENC_CIPHER_SIZE, tmp->step6.outkey, tmp->step6.chachanonce,1);
CHECK_APP_CANARY();
if (MEMCMP(tmp->step6.encciph, start_outputdata + INDEX_OUTPUT_OUT + i * OUTPUT_TX_LEN, ENC_CIPHER_SIZE) != 0){
MEMZERO(out, bufferLen);
return zxerr_unknown;
}
}else{
zemu_log_stack("OVK NOT SET");
MEMCPY(tmp->step3b.hashseed, item->ovk, OVK_SET_SIZE);
cx_hash_sha256(tmp->step3b.hashseed, OVK_SET_SIZE, tmp->step3b.outkey, CX_SHA256_SIZE);
tmp->step3b.hashseed[0] = 0x01;
cx_hash_sha256(tmp->step3b.hashseed, OVK_SET_SIZE, tmp->step3b.encciph_part1, CX_SHA256_SIZE);
tmp->step3b.hashseed[0] = 0x02;
cx_hash_sha256(tmp->step3b.hashseed, OVK_SET_SIZE, tmp->step3b.encciph_part2, CX_SHA256_SIZE);
MEMZERO(tmp->step3b.chachanonce,CHACHA_NONCE_SIZE);
chacha(tmp->step4b.encciph, tmp->step4b.encciph, ENC_CIPHER_SIZE, tmp->step4b.outkey, tmp->step4b.chachanonce,1);
if (MEMCMP(tmp->step4b.encciph, start_outputdata + INDEX_OUTPUT_OUT + i * OUTPUT_TX_LEN, ENC_CIPHER_SIZE) != 0){
MEMZERO(out, bufferLen);
return zxerr_unknown;
}
}
CHECK_APP_CANARY();
MEMZERO(out, bufferLen);
}
MEMZERO(out, bufferLen);
return zxerr_ok; //or some code for ok
}
void address_to_script(uint8_t *address, uint8_t *output){
uint8_t script[SCRIPT_SIZE];
script[0] = 0x19;
script[1] = 0x76;
script[2] = 0xa9;
script[3] = 0x14;
uint8_t tmp[HASH_SIZE];
cx_hash_sha256(address, PK_LEN_SECP256K1, tmp, CX_SHA256_SIZE);
ripemd160(tmp, CX_SHA256_SIZE, script + SCRIPT_CONSTS_SIZE);
script[24] = 0x88;
script[25] = 0xac;
MEMCPY(output,script,SCRIPT_SIZE);
}
typedef struct {
union {
// STEP 1
struct {
uint8_t r[SIG_R_SIZE];
uint8_t s[SIG_S_SIZE];
uint8_t v;
// DER signature max size should be 73
// https://bitcoin.stackexchange.com/questions/77191/what-is-the-maximum-size-of-a-der-encoded-ecdsa-signature#77192
uint8_t der_signature[DER_MAX_SIZE];
} step1;
struct {
uint8_t rs[SIG_R_SIZE + SIG_S_SIZE];
uint8_t dummy[DER_MAX_SIZE + 1];
} step2;
};
} __attribute__((packed)) signature_tr;
zxerr_t crypto_sign_and_check_transparent(uint8_t *buffer, uint16_t bufferLen, const uint8_t *txdata, const uint16_t txdatalen) {
zemu_log_stack("crypto_signchecktransparent_sapling");
if(t_inlist_len() == 0){
return zxerr_ok;
}
MEMZERO(buffer, bufferLen);
if(length_t_in_data() + length_spenddata() + length_outputdata() + LENGTH_HASH_DATA != txdatalen){
return zxerr_unknown;
}
if(get_state() != STATE_VERIFIED_ALL_TXDATA ){
return zxerr_unknown;
}
uint8_t *start_tindata = (uint8_t *)txdata;
uint8_t *start_signdata = (uint8_t *)(txdata + start_sighashdata());
uint8_t *out = (uint8_t *) buffer;
MEMZERO(out, bufferLen);
cx_ecfp_public_key_t cx_publicKey;
cx_ecfp_private_key_t cx_privateKey;
uint8_t privateKeyData[SK_SECP256K1_SIZE];
uint8_t pubKey[PUB_KEY_SIZE+1];