-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathLoad_FAS_MultiModal_DropModal.py
240 lines (168 loc) · 8.63 KB
/
Load_FAS_MultiModal_DropModal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
from __future__ import print_function, division
import os
import torch
import pandas as pd
#from skimage import io, transform
import cv2
import numpy as np
import random
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import pdb
import math
import os
import imgaug.augmenters as iaa
#face_scale = 0.9 #default for test, for training , can be set from [0.8 to 1.0]
# data augment from 'imgaug' --> Add (value=(-40,40), per_channel=True), GammaContrast (gamma=(0.5,1.5))
seq = iaa.Sequential([
iaa.Add(value=(-40,40), per_channel=True), # Add color
iaa.GammaContrast(gamma=(0.5,1.5)) # GammaContrast with a gamma of 0.5 to 1.5
])
# Tensor
class Cutout(object):
def __init__(self, length=30):
self.length = length
def __call__(self, sample):
img, image_x_depth, image_x_ir, spoofing_label, map_x1 = sample['image_x'],sample['image_x_depth'],sample['image_x_ir'],sample['spoofing_label'],sample['map_x1']
h, w = img.shape[1], img.shape[2] # Tensor [1][2], nparray [0][1]
mask = np.ones((h, w), np.float32)
y = np.random.randint(h)
x = np.random.randint(w)
length_new = np.random.randint(1, self.length)
y1 = np.clip(y - length_new // 2, 0, h)
y2 = np.clip(y + length_new // 2, 0, h)
x1 = np.clip(x - length_new // 2, 0, w)
x2 = np.clip(x + length_new // 2, 0, w)
mask[y1: y2, x1: x2] = 0.
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img *= mask
image_x_depth *= mask
image_x_ir *= mask
return {'image_x': img, 'image_x_depth': image_x_depth, 'image_x_ir': image_x_ir, 'spoofing_label': spoofing_label, 'map_x1': map_x1}
class Normaliztion(object):
"""
same as mxnet, normalize into [-1, 1]
image = (image - 127.5)/128
"""
def __call__(self, sample):
image_x, image_x_depth, image_x_ir, spoofing_label, map_x1 = sample['image_x'],sample['image_x_depth'],sample['image_x_ir'],sample['spoofing_label'],sample['map_x1']
new_image_x = (image_x - 127.5)/128 # [-1,1]
new_image_x_depth = (image_x_depth - 127.5)/128 # [-1,1]
new_image_x_ir = (image_x_ir - 127.5)/128 # [-1,1]
return {'image_x': new_image_x, 'image_x_depth': new_image_x_depth, 'image_x_ir': new_image_x_ir, 'spoofing_label': spoofing_label, 'map_x1': map_x1}
class RandomHorizontalFlip(object):
"""Horizontally flip the given Image randomly with a probability of 0.5."""
def __call__(self, sample):
image_x, image_x_depth, image_x_ir, spoofing_label, map_x1 = sample['image_x'],sample['image_x_depth'],sample['image_x_ir'],sample['spoofing_label'],sample['map_x1']
new_image_x = np.zeros((224, 224, 3))
new_image_x_depth = np.zeros((224, 224, 3))
new_image_x_ir = np.zeros((224, 224, 3))
p = random.random()
if p < 0.5:
#print('Flip')
new_image_x = cv2.flip(image_x, 1)
new_image_x_depth = cv2.flip(image_x_depth, 1)
new_image_x_ir = cv2.flip(image_x_ir, 1)
return {'image_x': new_image_x, 'image_x_depth': new_image_x_depth, 'image_x_ir': new_image_x_ir, 'spoofing_label': spoofing_label, 'map_x1': map_x1}
else:
#print('no Flip')
return {'image_x': image_x, 'image_x_depth': image_x_depth, 'image_x_ir': image_x_ir, 'spoofing_label': spoofing_label, 'map_x1': map_x1}
class ToTensor(object):
"""
Convert ndarrays in sample to Tensors.
process only one batch every time
"""
def __call__(self, sample):
image_x, image_x_depth, image_x_ir, spoofing_label, map_x1 = sample['image_x'],sample['image_x_depth'],sample['image_x_ir'],sample['spoofing_label'],sample['map_x1']
# swap color axis because
# numpy image: (batch_size) x H x W x C
# torch image: (batch_size) x C X H X W
image_x = image_x[:,:,::-1].transpose((2, 0, 1))
image_x = np.array(image_x)
p = random.random()
if p < 0.5:
image_x_depth = image_x_depth[:,:,::-1].transpose((2, 0, 1))
image_x_depth = np.array(image_x_depth)
else:
# Blocked modality
image_x_depth = np.zeros((3, 224, 224))
image_x_depth = np.array(image_x_depth)
p1 = random.random()
if p1 < 0.5:
image_x_ir = image_x_ir[:,:,::-1].transpose((2, 0, 1))
image_x_ir = np.array(image_x_ir)
else:
# Blocked modality
image_x_ir = np.zeros((3, 224, 224))
image_x_ir = np.array(image_x_ir)
map_x1 = np.array(map_x1)
spoofing_label_np = np.array([0],dtype=np.long)
spoofing_label_np[0] = spoofing_label
return {'image_x': torch.from_numpy(image_x.astype(np.float)).float(), 'image_x_depth': torch.from_numpy(image_x_depth.astype(np.float)).float(), 'image_x_ir': torch.from_numpy(image_x_ir.astype(np.float)).float(), 'spoofing_label': torch.from_numpy(spoofing_label_np.astype(np.long)).long(), 'map_x1': torch.from_numpy(map_x1.astype(np.float)).float()}
# /home/ztyu/FAS_dataset/OULU/Train_images/ 6_3_20_5_121_scene.jpg 6_3_20_5_121_scene.dat
# /home/ztyu/FAS_dataset/OULU/IJCB_re/OULUtrain_images/ 6_3_20_5_121_depth1D.jpg
class Spoofing_train(Dataset):
def __init__(self, info_list, root_dir, transform=None):
self.landmarks_frame = pd.read_csv(info_list, delimiter=' ', header=None)
self.root_dir = root_dir
self.transform = transform
def __len__(self):
return len(self.landmarks_frame)
def __getitem__(self, idx):
#print(self.landmarks_frame.iloc[idx, 0])
videoname = str(self.landmarks_frame.iloc[idx, 0])
image_path = os.path.join(self.root_dir, videoname)
videoname_depth = str(self.landmarks_frame.iloc[idx, 1])
image_path_depth = os.path.join(self.root_dir, videoname_depth)
videoname_ir = str(self.landmarks_frame.iloc[idx, 2])
image_path_ir = os.path.join(self.root_dir, videoname_ir)
#log_file2 = open('temp.txt', 'w')
#log_file2.write('%s \n' % (image_path))
#log_file2.write('%s \n' % (image_path_depth))
#log_file2.write('%s \n' % (image_path_ir))
#log_file2.flush()
image_x, map_x1 = self.get_single_image_x_RGB(image_path)
image_x_depth = self.get_single_image_x(image_path_depth)
image_x_ir = self.get_single_image_x(image_path_ir)
spoofing_label = self.landmarks_frame.iloc[idx, 3]
if spoofing_label == 1: # real
spoofing_label = 1 # real
#map_x1 = np.zeros((28, 28)) # real
#map_x1 = np.ones((28, 28))
else: # fake
spoofing_label = 0
#map_x1 = np.ones((28, 28)) # fake
map_x1 = np.zeros((28, 28))
sample = {'image_x': image_x, 'image_x_depth': image_x_depth, 'image_x_ir': image_x_ir, 'spoofing_label': spoofing_label, 'map_x1': map_x1}
if self.transform:
sample = self.transform(sample)
return sample
def get_single_image_x_RGB(self, image_path):
image_x = np.zeros((224, 224, 3))
binary_mask = np.zeros((28, 28))
# RGB
image_x_temp = cv2.imread(image_path)
#cv2.imwrite('temp.jpg', image_x_temp)
image_x = cv2.resize(image_x_temp, (224, 224))
# data augment from 'imgaug' --> Add (value=(-40,40), per_channel=True), GammaContrast (gamma=(0.5,1.5))
image_x_aug = seq.augment_image(image_x)
image_x_temp_gray = cv2.imread(image_path, 0)
image_x_temp_gray = cv2.resize(image_x_temp_gray, (28, 28))
for i in range(28):
for j in range(28):
if image_x_temp_gray[i,j]>0:
binary_mask[i,j]=1
else:
binary_mask[i,j]=0
return image_x_aug, binary_mask
def get_single_image_x(self, image_path):
image_x = np.zeros((224, 224, 3))
# RGB
image_x_temp = cv2.imread(image_path)
#cv2.imwrite('temp.jpg', image_x_temp)
image_x = cv2.resize(image_x_temp, (224, 224))
# data augment from 'imgaug' --> Add (value=(-40,40), per_channel=True), GammaContrast (gamma=(0.5,1.5))
image_x_aug = seq.augment_image(image_x)
return image_x_aug