forked from ffhibnese/Model-Inversion-Attack-ToolBox
-
Notifications
You must be signed in to change notification settings - Fork 1
/
models.py
133 lines (115 loc) · 4.61 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import torch
from torch import nn
def dconv_bn_relu(in_dim, out_dim):
return nn.Sequential(
nn.ConvTranspose2d(
in_dim, out_dim, 5, 2, padding=2, output_padding=1, bias=False
),
nn.BatchNorm2d(out_dim),
nn.ReLU(),
)
class ContextNetwork(nn.Module):
def __init__(self):
super(ContextNetwork, self).__init__()
# input_shape: (None, 4, img_h, img_w)
self.conv1 = nn.Conv2d(4, 32, kernel_size=5, stride=1, padding=2)
self.bn1 = nn.BatchNorm2d(32)
self.act1 = nn.ReLU()
# input_shape: (None, 32, img_h, img_w)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.act2 = nn.ReLU()
# input_shape: (None, 64, img_h//2, img_w//2)
self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
self.bn3 = nn.BatchNorm2d(64)
self.act3 = nn.ReLU()
# input_shape: (None, 128, img_h//2, img_w//2)
self.conv4 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1)
self.bn4 = nn.BatchNorm2d(128)
self.act4 = nn.ReLU()
# input_shape: (None, 128, img_h//4, img_w//4)
self.conv5 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)
self.bn5 = nn.BatchNorm2d(128)
self.act5 = nn.ReLU()
# input_shape: (None, 128, img_h//4, img_w//4)
self.conv6 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)
self.bn6 = nn.BatchNorm2d(128)
self.act6 = nn.ReLU()
# input_shape: (None, 128, img_h//4, img_w//4)
self.conv7 = nn.Conv2d(128, 128, kernel_size=3, stride=1, dilation=2, padding=2)
self.bn7 = nn.BatchNorm2d(128)
self.act7 = nn.ReLU()
# input_shape: (None, 128, img_h//4, img_w//4)
self.conv8 = nn.Conv2d(128, 128, kernel_size=3, stride=1, dilation=4, padding=4)
self.bn8 = nn.BatchNorm2d(128)
self.act8 = nn.ReLU()
# input_shape: (None, 128, img_h//4, img_w//4)
self.conv9 = nn.Conv2d(128, 128, kernel_size=3, stride=1, dilation=8, padding=8)
self.bn9 = nn.BatchNorm2d(128)
self.act9 = nn.ReLU()
# input_shape: (None, 128, img_h//4, img_w//4)
self.conv10 = nn.Conv2d(
128, 128, kernel_size=3, stride=1, dilation=16, padding=16
)
self.bn10 = nn.BatchNorm2d(128)
self.act10 = nn.ReLU()
def forward(self, x):
x = self.bn1(self.act1(self.conv1(x)))
x = self.bn2(self.act2(self.conv2(x)))
x = self.bn3(self.act3(self.conv3(x)))
x = self.bn4(self.act4(self.conv4(x)))
x = self.bn5(self.act5(self.conv5(x)))
x = self.bn6(self.act6(self.conv6(x)))
x = self.bn7(self.act7(self.conv7(x)))
x = self.bn8(self.act8(self.conv8(x)))
x = self.bn9(self.act9(self.conv9(x)))
x = self.bn10(self.act10(self.conv10(x)))
return x
class IdentityGenerator(nn.Module):
def __init__(self, in_dim=100, dim=64):
super(IdentityGenerator, self).__init__()
self.l1 = nn.Sequential(
nn.Linear(in_dim, dim * 8 * 4 * 4, bias=False),
nn.BatchNorm1d(dim * 8 * 4 * 4),
nn.ReLU(),
)
self.l2_5 = nn.Sequential(
dconv_bn_relu(dim * 8, dim * 4), dconv_bn_relu(dim * 4, dim * 2)
)
def forward(self, x):
y = self.l1(x)
y = y.view(y.size(0), -1, 4, 4)
y = self.l2_5(y)
return y
class InversionNet(nn.Module):
def __init__(self, out_dim=128):
super(InversionNet, self).__init__()
# input [4, h, w] output [256, h // 4, w // 4]
self.ContextNetwork = ContextNetwork()
# input [z_dim] output[128, 16, 16]
self.IdentityGenerator = IdentityGenerator()
self.dim = 128 + 128
self.out_dim = out_dim
self.Dconv = nn.Sequential(
dconv_bn_relu(self.dim, self.out_dim),
dconv_bn_relu(self.out_dim, self.out_dim // 2),
)
self.Conv = nn.Sequential(
nn.Conv2d(
self.out_dim // 2, self.out_dim // 4, kernel_size=3, stride=1, padding=1
),
nn.BatchNorm2d(self.out_dim // 4),
nn.ReLU(),
nn.Conv2d(self.out_dim // 4, 3, kernel_size=3, stride=1, padding=1),
nn.Sigmoid(),
)
def forward(self, inp):
# x.shape [4, h, w] z.shape [100]
x, z = inp
context_info = self.ContextNetwork(x)
identity_info = self.IdentityGenerator(z)
# []
y = torch.cat((context_info, identity_info), dim=1)
y = self.Dconv(y)
y = self.Conv(y)
return y