-
Notifications
You must be signed in to change notification settings - Fork 6
/
MTFAA_Net_full.py
335 lines (258 loc) · 12.1 KB
/
MTFAA_Net_full.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
from operator import matmul
from this import d
import torch
from torch import nn
import numpy as np
from torch.nn.modules.conv import ConvTranspose2d
# device = torch.device("cuda:2" if torch.cuda.is_available() else "cpu")
# device = torch.device('cuda:0')
torch.set_default_tensor_type(torch.FloatTensor)
import math
import math
from collections import OrderedDict
from typing import Callable, Iterable, List, Optional, Tuple, Union
import numpy as np
import torch
from torch import Tensor, nn
from torch.nn import functional as F
from torch.nn import init
from torch.nn.parameter import Parameter
from typing_extensions import Final
ERB_fb = np.load('./erb.npy').astype(np.float32)
class AttentionMask(nn.Module):
def __init__(self, causal, mask_value=-1e9):
super(AttentionMask, self).__init__()
self.causal = causal
self.mask_value = mask_value
if not isinstance(mask_value, float): raise ValueError("Mask value must be a float.")
def forward(self, inp):
# inp.shape = (bs, F, T)
batch_size = inp.shape[0]
max_seq_len = inp.shape[2]
if self.causal:
causal_mask = self.lower_triangular_mask([1,max_seq_len,max_seq_len])
unmasked = torch.zeros([batch_size, max_seq_len, max_seq_len])
masked = torch.fill_(torch.empty([batch_size, max_seq_len, max_seq_len]), self.mask_value)
att_mask = torch.where(causal_mask, unmasked, masked)
return att_mask
else:
return torch.zeros([batch_size, max_seq_len, max_seq_len], dtype=torch.float32)
def lower_triangular_mask(self, shape):
row_index = torch.cumsum(torch.ones(shape,dtype=int), -2)
col_index = torch.cumsum(torch.ones(shape,dtype=int), -1)
return torch.greater_equal(row_index, col_index)
def apply_complex(fr, fi, input, dtype = torch.complex64):
return (fr(input.real)-fi(input.imag)).type(dtype) \
+ 1j*(fr(input.imag)+fi(input.real)).type(dtype)
class ComplexConv2d(nn.Module):
def __init__(self,in_channels, out_channels, kernel_size=3, stride=1, padding = 'same',
dilation=1, groups=1, bias=True):
super(ComplexConv2d, self).__init__()
self.conv_r = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias)
self.conv_i = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias)
def forward(self,input):
return apply_complex(self.conv_r, self.conv_i, input)
class PE(nn.Module):
def __init__(self):
super(PE, self).__init__()
self.complex_conv = ComplexConv2d(in_channels=1, out_channels=4, kernel_size=(3,1), stride=(1,1))
def forward(self,x):
#x.shape = (Bs, F, T), dtype=complex64
x = x.view(x.shape[0], x.shape[1], x.shape[2], 1) #x.shape = (Bs, F, T, 1)
x = x.permute(0,3,2,1) #(Bs, 1, T, F)
x = self.complex_conv(x) #(Bs, 4, T, F)
x = torch.abs(x) #(Bs, 4, T, F), dtype=real
x = torch.pow(x + 1e-12, 0.5) #(Bs, 4, T, F), dtype=real
return x
class BM(nn.Module):
def __init__(self, fft_num, f_c):
super(BM, self).__init__()
self.bm = nn.Linear(fft_num//2+1, f_c, bias=False)
self.bm.weight = nn.Parameter(torch.from_numpy(ERB_fb), requires_grad=False)
#---------------------------high learnt-----------------------
# self.flc_low = nn.Linear(fft_num//2+1, 160, bias=False)
# self.flc_low.weight = nn.Parameter(torch.from_numpy(scm[:160, :]), requires_grad=False)
# self.flc_high = nn.Linear(fft_num//2+1, 96, bias=False)
# self.flc_high.weight = nn.Parameter(torch.from_numpy(scm[160:, :]), requires_grad=True)
def forward(self,x):
#x.shape = (Bs, 4, T, F), dtype=real
x = self.bm(x) #(Bs, 4, T, F_c), dtype=real
# x = x.to(torch.float32)
# x_low = self.flc_low(x)
# x_high = self.flc_high(x)
# x = torch.cat([x_low, x_high], -1)
return x
class BS(nn.Module):
def __init__(self, fft_num, f_c):
super(BS, self).__init__()
self.bs = nn.Linear(f_c, fft_num//2+1, bias=False)
self.bs.weight = nn.Parameter(torch.from_numpy(ERB_fb.T), requires_grad=False)
def forward(self,x):
#x.shape = (Bs, 4, T, F), dtype=real
x = self.bs(x) #(Bs, 4, T, F_c), dtype=real
return x
class FD(nn.Module):
def __init__(self, in_channels, out_channels):
super(FD, self).__init__()
self.conv_1 = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=(1,7), stride=(1,4), padding=(0,2),groups=2)
self.bn_1 = nn.BatchNorm2d(out_channels)
self.act_1 = nn.PReLU()
def forward(self,x):
#x.shape = (Bs, 4, T, F_c), dtype=real
x = self.act_1(self.bn_1(self.conv_1(x))) #(Bs, C, T, F1), dtype=real
return x
class TFCM_block(nn.Module):
def __init__(self, in_channels, kernel_size, dilation):
super(TFCM_block, self).__init__()
self.dilation = dilation[0]
self.k_t = kernel_size[0]
self.pointwise_1 = nn.Conv2d(in_channels, in_channels, 1,1,0,1,1, bias=False)
self.bn_1 = nn.BatchNorm2d(in_channels)
self.act_1 = nn.PReLU()
self.pointwise_2 = nn.Conv2d(in_channels, in_channels, 1,1,0,1,1, bias=False)
self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size, dilation=dilation, padding='valid', groups=in_channels,bias=False)
self.bn_2 = nn.BatchNorm2d(in_channels)
self.act_2 = nn.PReLU()
def forward(self,x):
#x.shape = (Bs, C, T, F'), dtype=real
x1 = self.act_1(self.bn_1(self.pointwise_1(x))) #(Bs, C, T, F'), dtype=real
x1 = torch.nn.functional.pad(x1,pad=(1,1,int(self.dilation*(self.k_t-1)),0,0,0), mode='constant', value=0)
x1 = self.act_2(self.bn_2(self.depthwise(x1)))
x1 = self.pointwise_2(x1)
x = x + x1
return x
class TFCM(nn.Module):
def __init__(self, B, in_channels):
super(TFCM, self).__init__()
self.blocks = nn.ModuleList([TFCM_block(in_channels, (3,3), (2**b,1)) for b in range(B)])
def forward(self,x):
#x.shape = (Bs, C, T, F'), dtype=real
for block in self.blocks:
x = block(x)
return x
class ASA(nn.Module):
def __init__(self, in_channels):
super(ASA, self).__init__()
self.pointwise_1 = nn.Conv2d(in_channels, in_channels//4, 1,1,0,1,1, bias=False)
self.bn_1 = nn.BatchNorm2d(in_channels//4)
self.act_1 = nn.PReLU()
self.pointwise_2 = nn.Conv2d(in_channels, in_channels//4, 1,1,0,1,1, bias=False)
self.bn_2 = nn.BatchNorm2d(in_channels//4)
self.act_2 = nn.PReLU()
self.pointwise_3 = nn.Conv2d(in_channels//4, in_channels, 1,1,0,1,1, bias=False)
self.bn_3 = nn.BatchNorm2d(in_channels)
self.act_3 = nn.PReLU()
def forward(self,x):
#x.shape = (Bs, Ci, T, F), dtype=real
C = x.shape[1]
F = x.shape[3]
T = x.shape[2]
x1 = self.act_1(self.bn_1(self.pointwise_1(x)))
qf = x1.permute(0,2,3,1)
v = x1.permute(0,2,3,1)
kf = x1.permute(0,2,1,3)
mmf = torch.softmax(torch.matmul(qf,kf) / math.sqrt(C*F/2), dim=-1)
mmf = torch.matmul(mmf,v) #shape = (Bs, T, F, C)
x2 = self.act_2(self.bn_2(self.pointwise_2(x)))
qt = x2.permute(0,3,2,1) #shape = (Bs, F, T, C)
kt = x2.permute(0,3,1,2) #shape = (Bs, F, C, T)
mmt = torch.matmul(qt,kt) / math.sqrt(C*T/2) #shape = (Bs, F, T, T)
mask = AttentionMask(causal=True)(mmt).to(mmt.device) #shape = (Bs, T, T)
mask = mask.view(mask.shape[0],1, mask.shape[2],mask.shape[2]) #shape = (Bs, 1, T, T)
mmt = torch.softmax(mmt + mask, dim=-1) #shape = (Bs, F, T, T)
mmf = mmf.permute(0,2,1,3) #shape = (Bs, F, T, C)
m = torch.matmul(mmt, mmf) #shape = (Bs, F, T, C)
m = m.permute(0,3,2,1) #shape = (Bs, C, T, F)
m = self.act_3(self.bn_3(self.pointwise_3(m)))
out = m + x
return out
class FU(nn.Module):
def __init__(self, in_channels, out_channels):
super(FU, self).__init__()
self.pointwise_1 = nn.Conv2d(2*in_channels, in_channels, 1,1,0,1,1, bias=False)
self.bn_1 = nn.BatchNorm2d(in_channels)
self.act_1 = nn.Tanh()
self.pointwise_2 = nn.Conv2d(in_channels, in_channels, 1,1,0,1,1, bias=False)
self.bn_2 = nn.BatchNorm2d(in_channels)
self.act_2 = nn.PReLU()
self.pointwise_3 = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=(1,7), stride=(1,4),groups=2)
self.bn_3 = nn.BatchNorm2d(out_channels)
self.act_3 = nn.PReLU()
def forward(self,x, fd):
x = torch.cat([x,fd], dim=1)
x = self.act_1(self.bn_1(self.pointwise_1(x)))
x = x * fd
x = self.act_2(self.bn_2(self.pointwise_2(x)))
x = self.act_3(self.bn_3(self.pointwise_3(x)))
return x
class FDTA(nn.Module):
def __init__(self, in_channels, out_channels, B):
super(FDTA, self).__init__()
self.fd = FD(in_channels, out_channels)
self.tf_conv = TFCM(B=B, in_channels=out_channels)
self.asa = ASA(out_channels)
def forward(self,x):
fd_out = self.fd(x)
oup = self.asa(self.tf_conv(fd_out))
return [oup,fd_out]
class FUTA(nn.Module):
def __init__(self, in_channels, out_channels, B):
super(FUTA, self).__init__()
self.fu = FU(in_channels, out_channels)
self.tf_conv = TFCM(B=B, in_channels=out_channels)
self.asa = ASA(out_channels)
def forward(self,x, fd_out):
fu_out = self.fu(x, fd_out)
oup = self.asa(self.tf_conv(fu_out))
return oup
class MTFAA_Net(nn.Module):
def __init__(self):
super(MTFAA_Net, self).__init__()
self.pe = PE()
self.bm = BM(fft_num=1536, f_c=256)
self.fdta1 = FDTA(in_channels=4, out_channels=48, B=6)
self.fdta2 = FDTA(in_channels=48, out_channels=96, B=6)
self.fdta3 = FDTA(in_channels=96, out_channels=192, B=6)
self.tf_conv1 = TFCM(B=6, in_channels=192)
self.asa1 = ASA(192)
self.tf_conv2 = TFCM(B=6, in_channels=192)
self.asa2 = ASA(192)
self.futa1 = FUTA(in_channels=192, out_channels=96, B=6)
self.futa2 = FUTA(in_channels=96, out_channels=48, B=6)
self.futa3 = FUTA(in_channels=48, out_channels=6, B=6)
self.bs = BS(fft_num=1536, f_c=256)
self.m = Mask()
def forward(self,x):
y = self.pe(x)
y = self.bm(y)
[y,fd_out1] = self.fdta1(y)
[y,fd_out2] = self.fdta2(y)
[y,fd_out3] = self.fdta3(y)
y = self.asa2(self.tf_conv2(self.asa1(self.tf_conv1(y))))
y = self.futa1(y,fd_out3)[:,:,:,:-3]
y = self.futa2(y,fd_out2)[:,:,:,:-3]
y = self.futa3(y,fd_out1)[:,:,:,:-3]
y = self.bs(y)
mask = y.permute(0,1,3,2)
oup = self.m(mask, x)
return oup
class Mask(nn.Module):
def __init__(self):
super(Mask, self).__init__()
self.unfold = torch.nn.Unfold(kernel_size=(3,1), padding=(1,0))
def forward(self,mask, spec):
# mask.shape = [bs,6,F,T], dtype=real
# spec.shape = [bs,F,T], dtype=complex
mask_s1 = mask[:,:3,:,:]
mask_s2_mag = mask[:,3,:,:]
mask_s2_pha= mask[:,4,:,:]
spec = spec.reshape([spec.shape[0], 1, spec.shape[1],spec.shape[2]])
mag = torch.abs(spec)
pha = torch.angle(spec)[:,0,:,:]
mag_unfold = self.unfold(mag).reshape([spec.shape[0], 3, -1,spec.shape[3]])
x = torch.sum(mag_unfold * mask_s1, dim=1) # x.shape = [bs,F,T], dtype=real
real = x * mask_s2_mag * torch.cos(pha + mask_s2_pha)
imag = x * mask_s2_mag * torch.sin(pha + mask_s2_pha)
real = real.reshape([real.shape[0], real.shape[1],real.shape[2],1])
imag = imag.reshape([imag.shape[0], imag.shape[1],imag.shape[2],1])
return torch.cat([real, imag],dim=-1)