-
Notifications
You must be signed in to change notification settings - Fork 0
/
yolox_s_8xb8-300e_coco.py
236 lines (220 loc) · 7.04 KB
/
yolox_s_8xb8-300e_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
_base_ = ['../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py']
img_scale = (640, 640) # height, width
# model settings
model = dict(
type='YOLOX',
data_preprocessor=dict(
type='DetDataPreprocessor',
pad_size_divisor=32,
batch_augments=[
dict(
type='BatchSyncRandomResize',
random_size_range=(480, 800),
size_divisor=32,
interval=10)
]),
backbone=dict(
type='CSPDarknet',
deepen_factor=0.33,
widen_factor=0.5,
out_indices=(2, 3, 4),
use_depthwise=False,
spp_kernal_sizes=(5, 9, 13),
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
act_cfg=dict(type='Swish'),
),
neck=dict(
type='YOLOXPAFPN',
in_channels=[128, 256, 512],
out_channels=128,
num_csp_blocks=1,
use_depthwise=False,
upsample_cfg=dict(scale_factor=2, mode='nearest'),
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
act_cfg=dict(type='Swish')),
bbox_head=dict(
type='YOLOXHead',
num_classes=80,
in_channels=128,
feat_channels=128,
stacked_convs=2,
strides=(8, 16, 32),
use_depthwise=False,
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
act_cfg=dict(type='Swish'),
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
reduction='sum',
loss_weight=1.0),
loss_bbox=dict(
type='IoULoss',
mode='square',
eps=1e-16,
reduction='sum',
loss_weight=5.0),
loss_obj=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
reduction='sum',
loss_weight=1.0),
loss_l1=dict(type='L1Loss', reduction='sum', loss_weight=1.0)),
train_cfg=dict(assigner=dict(type='SimOTAAssigner', center_radius=2.5)),
# In order to align the source code, the threshold of the val phase is
# 0.01, and the threshold of the test phase is 0.001.
test_cfg=dict(score_thr=0.01, nms=dict(type='nms', iou_threshold=0.65)))
# dataset settings
data_root = 'data/coco/'
dataset_type = 'CocoDataset'
# file_client_args = dict(
# backend='petrel',
# path_mapping=dict({
# './data/': 's3://openmmlab/datasets/detection/',
# 'data/': 's3://openmmlab/datasets/detection/'
# }))
file_client_args = dict(backend='disk')
train_pipeline = [
dict(type='Mosaic', img_scale=img_scale, pad_val=114.0),
dict(
type='RandomAffine',
scaling_ratio_range=(0.1, 2),
border=(-img_scale[0] // 2, -img_scale[1] // 2)),
dict(
type='MixUp',
img_scale=img_scale,
ratio_range=(0.8, 1.6),
pad_val=114.0),
dict(type='YOLOXHSVRandomAug'),
dict(type='RandomFlip', prob=0.5),
# According to the official implementation, multi-scale
# training is not considered here but in the
# 'mmdet/models/detectors/yolox.py'.
# Resize and Pad are for the last 15 epochs when Mosaic,
# RandomAffine, and MixUp are closed by YOLOXModeSwitchHook.
dict(type='Resize', scale=img_scale, keep_ratio=True),
dict(
type='Pad',
pad_to_square=True,
# If the image is three-channel, the pad value needs
# to be set separately for each channel.
pad_val=dict(img=(114.0, 114.0, 114.0))),
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False),
dict(type='PackDetInputs')
]
train_dataset = dict(
# use MultiImageMixDataset wrapper to support mosaic and mixup
type='MultiImageMixDataset',
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_train2017.json',
data_prefix=dict(img='train2017/'),
pipeline=[
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='LoadAnnotations', with_bbox=True)
],
filter_cfg=dict(filter_empty_gt=False, min_size=32)),
pipeline=train_pipeline)
test_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='Resize', scale=img_scale, keep_ratio=True),
dict(
type='Pad',
pad_to_square=True,
pad_val=dict(img=(114.0, 114.0, 114.0))),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
train_dataloader = dict(
batch_size=8,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset)
val_dataloader = dict(
batch_size=8,
num_workers=4,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_val2017.json',
data_prefix=dict(img='val2017/'),
test_mode=True,
pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = dict(
type='CocoMetric',
ann_file=data_root + 'annotations/instances_val2017.json',
metric='bbox')
test_evaluator = val_evaluator
# training settings
max_epochs = 300
num_last_epochs = 15
interval = 10
train_cfg = dict(max_epochs=max_epochs, val_interval=interval)
# optimizer
# default 8 gpu
base_lr = 0.01
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(
type='SGD', lr=base_lr, momentum=0.9, weight_decay=5e-4,
nesterov=True),
paramwise_cfg=dict(norm_decay_mult=0., bias_decay_mult=0.))
# learning rate
param_scheduler = [
dict(
# use quadratic formula to warm up 5 epochs
# and lr is updated by iteration
# TODO: fix default scope in get function
type='mmdet.QuadraticWarmupLR',
by_epoch=True,
begin=0,
end=5,
convert_to_iter_based=True),
dict(
# use cosine lr from 5 to 285 epoch
type='CosineAnnealingLR',
eta_min=base_lr * 0.05,
begin=5,
T_max=max_epochs - num_last_epochs,
end=max_epochs - num_last_epochs,
by_epoch=True,
convert_to_iter_based=True),
dict(
# use fixed lr during last 15 epochs
type='ConstantLR',
by_epoch=True,
factor=1,
begin=max_epochs - num_last_epochs,
end=max_epochs,
)
]
default_hooks = dict(
checkpoint=dict(
interval=interval,
max_keep_ckpts=3 # only keep latest 3 checkpoints
))
custom_hooks = [
dict(
type='YOLOXModeSwitchHook',
num_last_epochs=num_last_epochs,
priority=48),
dict(type='SyncNormHook', priority=48),
dict(
type='EMAHook',
ema_type='ExpMomentumEMA',
momentum=0.0001,
update_buffers=True,
priority=49)
]
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# USER SHOULD NOT CHANGE ITS VALUES.
# base_batch_size = (8 GPUs) x (8 samples per GPU)
auto_scale_lr = dict(base_batch_size=64)