-
Notifications
You must be signed in to change notification settings - Fork 107
/
keys.rs
1129 lines (966 loc) · 34.2 KB
/
keys.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Orchard key types.
//!
//! <https://zips.z.cash/protocol/nu5.pdf#orchardkeycomponents>
#![allow(clippy::unit_arg)]
#![allow(dead_code)]
#[cfg(test)]
mod tests;
use std::{
convert::{From, Into, TryFrom, TryInto},
fmt, io,
};
use aes::Aes256;
use bech32::{self, ToBase32, Variant};
use bitvec::prelude::*;
use fpe::ff1::{BinaryNumeralString, FF1};
use group::{prime::PrimeCurveAffine, Group, GroupEncoding};
use halo2::{
arithmetic::{Coordinates, CurveAffine, FieldExt},
pasta::pallas,
};
use rand_core::{CryptoRng, RngCore};
use subtle::{Choice, ConstantTimeEq};
use crate::{
parameters::Network,
primitives::redpallas::{self, SpendAuth},
serialization::{
serde_helpers, ReadZcashExt, SerializationError, ZcashDeserialize, ZcashSerialize,
},
};
use super::sinsemilla::*;
/// PRP^d_K(d) := FF1-AES256_K("", d)
///
/// "Let FF1-AES256_K(tweak, x) be the FF1 format-preserving encryption
/// algorithm using AES with a 256-bit key K, and parameters radix = 2, minlen =
/// 88, maxlen = 88. It will be used only with the empty string "" as the
/// tweak. x is a sequence of 88 bits, as is the output."
///
/// <https://zips.z.cash/protocol/nu5.pdf#concreteprps>
#[allow(non_snake_case)]
fn prp_d(K: [u8; 32], d: [u8; 11]) -> [u8; 11] {
let radix = 2;
let tweak = b"";
let ff = FF1::<Aes256>::new(&K, radix).expect("valid radix");
ff.encrypt(tweak, &BinaryNumeralString::from_bytes_le(&d))
.unwrap()
.to_bytes_le()
.try_into()
.unwrap()
}
/// Invokes Blake2b-512 as PRF^expand with parameter t.
///
/// PRF^expand(sk, t) := BLAKE2b-512("Zcash_ExpandSeed", sk || t)
///
/// <https://zips.z.cash/protocol/nu5.pdf#concreteprfs>
// TODO: This is basically a duplicate of the one in our sapling module, its
// definition in the draft Nu5 spec is incomplete so I'm putting it here in case
// it changes.
pub fn prf_expand(sk: [u8; 32], t: Vec<&[u8]>) -> [u8; 64] {
let mut state = blake2b_simd::Params::new()
.hash_length(64)
.personal(b"Zcash_ExpandSeed")
.to_state();
state.update(&sk[..]);
for t_i in t {
state.update(t_i);
}
*state.finalize().as_array()
}
/// Used to derive the outgoing cipher key _ock_ used to encrypt an encrypted
/// output note from an Action.
///
/// PRF^ock(ovk, cv, cm_x, ephemeralKey) := BLAKE2b-256(“Zcash_Orchardock”, ovk || cv || cm_x || ephemeralKey)
///
/// <https://zips.z.cash/protocol/nu5.pdf#concreteprfs>
/// <https://zips.z.cash/protocol/nu5.pdf#concretesym>
fn prf_ock(ovk: [u8; 32], cv: [u8; 32], cm_x: [u8; 32], ephemeral_key: [u8; 32]) -> [u8; 32] {
let hash = blake2b_simd::Params::new()
.hash_length(32)
.personal(b"Zcash_Orchardock")
.to_state()
.update(&ovk)
.update(&cv)
.update(&cm_x)
.update(&ephemeral_key)
.finalize();
hash.as_bytes().try_into().expect("32 byte array")
}
/// Used to derive a diversified base point from a diversifier value.
///
/// DiversifyHash^Orchard(d) := {︃ GroupHash^P("z.cash:Orchard-gd",""), if P = 0_P
/// P, otherwise
///
/// where P = GroupHash^P(("z.cash:Orchard-gd", LEBS2OSP_l_d(d)))
///
/// <https://zips.z.cash/protocol/nu5.pdf#concretediversifyhash>
fn diversify_hash(d: &[u8]) -> pallas::Point {
let p = pallas_group_hash(b"z.cash:Orchard-gd", d);
if <bool>::from(p.is_identity()) {
pallas_group_hash(b"z.cash:Orchard-gd", b"")
} else {
p
}
}
/// Magic human-readable strings used to identify what networks Orchard spending
/// keys are associated with when encoded/decoded with bech32.
///
/// [orchardspendingkeyencoding]: https://zips.z.cash/protocol/nu5.pdf#orchardspendingkeyencoding
mod sk_hrp {
pub const MAINNET: &str = "secret-orchard-sk-main";
pub const TESTNET: &str = "secret-orchard-sk-test";
}
/// A spending key, as described in [protocol specification §4.2.3][ps].
///
/// Our root secret key of the Orchard key derivation tree. All other Orchard
/// key types derive from the [`SpendingKey`] value.
///
/// [ps]: https://zips.z.cash/protocol/nu5.pdf#orchardkeycomponents
#[derive(Copy, Clone, Debug)]
#[cfg_attr(
any(test, feature = "proptest-impl"),
derive(proptest_derive::Arbitrary)
)]
pub struct SpendingKey {
network: Network,
bytes: [u8; 32],
}
impl ConstantTimeEq for SpendingKey {
/// Check whether two `SpendingKey`s are equal, runtime independent of the
/// value of the secret.
///
/// # Note
///
/// This function short-circuits if the networks of the keys are different.
/// Otherwise, it should execute in time independent of the `bytes` value.
fn ct_eq(&self, other: &Self) -> Choice {
if self.network != other.network {
return Choice::from(0);
}
self.bytes.ct_eq(&other.bytes)
}
}
impl fmt::Display for SpendingKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let hrp = match self.network {
Network::Mainnet => sk_hrp::MAINNET,
Network::Testnet => sk_hrp::TESTNET,
};
bech32::encode_to_fmt(f, hrp, &self.bytes.to_base32(), Variant::Bech32).unwrap()
}
}
impl From<SpendingKey> for [u8; 32] {
fn from(sk: SpendingKey) -> Self {
sk.bytes
}
}
impl Eq for SpendingKey {}
impl PartialEq for SpendingKey {
fn eq(&self, other: &Self) -> bool {
self.ct_eq(other).unwrap_u8() == 1u8
}
}
impl SpendingKey {
/// Generate a new `SpendingKey`.
///
/// When generating, we check that the corresponding `SpendAuthorizingKey`
/// is not zero, else fail.
///
/// [orchardkeycomponents]: https://zips.z.cash/protocol/nu5.pdf#orchardkeycomponents
pub fn new<T>(csprng: &mut T, network: Network) -> Self
where
T: RngCore + CryptoRng,
{
loop {
let mut bytes = [0u8; 32];
csprng.fill_bytes(&mut bytes);
let sk = Self::from_bytes(bytes, network);
// "if ask = 0, discard this key and repeat with a new sk"
if SpendAuthorizingKey::from(sk).0 == pallas::Scalar::zero() {
continue;
}
break sk;
}
}
/// Generate a `SpendingKey` from existing bytes.
pub fn from_bytes(bytes: [u8; 32], network: Network) -> Self {
Self { network, bytes }
}
}
/// A Spend authorizing key (_ask_), as described in [protocol specification
/// §4.2.3][orchardkeycomponents].
///
/// Used to generate _spend authorization randomizers_ to sign each _Action
/// Description_ that spends notes, proving ownership of notes.
///
/// [orchardkeycomponents]: https://zips.z.cash/protocol/nu5.pdf#orchardkeycomponents
#[derive(Copy, Clone, Eq)]
pub struct SpendAuthorizingKey(pub(crate) pallas::Scalar);
impl ConstantTimeEq for SpendAuthorizingKey {
/// Check whether two `SpendAuthorizingKey`s are equal, runtime independent
/// of the value of the secret.
fn ct_eq(&self, other: &Self) -> Choice {
self.0.to_bytes().ct_eq(&other.0.to_bytes())
}
}
impl fmt::Debug for SpendAuthorizingKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("SpendAuthorizingKey")
.field(&hex::encode(<[u8; 32]>::from(*self)))
.finish()
}
}
impl From<SpendAuthorizingKey> for [u8; 32] {
fn from(sk: SpendAuthorizingKey) -> Self {
sk.0.to_bytes()
}
}
impl From<SpendingKey> for SpendAuthorizingKey {
/// Invokes Blake2b-512 as _PRF^expand_, t=6, to derive a
/// `SpendAuthorizingKey` from a `SpendingKey`.
///
/// ask := ToScalar^Orchard(PRF^expand(sk, [6]))
///
/// <https://zips.z.cash/protocol/nu5.pdf#orchardkeycomponents>
/// <https://zips.z.cash/protocol/nu5.pdf#concreteprfs>
fn from(spending_key: SpendingKey) -> SpendAuthorizingKey {
// Handles ToScalar^Orchard
let ask = pallas::Scalar::from_bytes_wide(&prf_expand(spending_key.bytes, vec![&[6]]));
// let ak^P = SpendAuthSig^Orchard.DerivePublic(ask)...
let ak_bytes: [u8; 32] = SpendValidatingKey::from(SpendAuthorizingKey(ask)).into();
// if the last bit (that is, the 𝑦˜ bit) of repr_P (ak^P ) is 1:
// set ask ← −ask
match (ak_bytes[31] >> 7) == 0b0000_0001 {
true => Self(-ask),
false => Self(ask),
}
}
}
impl PartialEq for SpendAuthorizingKey {
fn eq(&self, other: &Self) -> bool {
self.ct_eq(other).unwrap_u8() == 1u8
}
}
impl PartialEq<[u8; 32]> for SpendAuthorizingKey {
fn eq(&self, other: &[u8; 32]) -> bool {
self.0.to_bytes().ct_eq(other).unwrap_u8() == 1u8
}
}
/// A Spend validating key, as described in [protocol specification
/// §4.2.3][orchardkeycomponents].
///
/// [orchardkeycomponents]: https://zips.z.cash/protocol/nu5.pdf#orchardkeycomponents
#[derive(Copy, Clone, Debug)]
pub struct SpendValidatingKey(pub(crate) redpallas::VerificationKey<SpendAuth>);
impl Eq for SpendValidatingKey {}
impl From<[u8; 32]> for SpendValidatingKey {
fn from(bytes: [u8; 32]) -> Self {
Self(redpallas::VerificationKey::try_from(bytes).unwrap())
}
}
impl From<SpendValidatingKey> for [u8; 32] {
fn from(ak: SpendValidatingKey) -> [u8; 32] {
ak.0.into()
}
}
impl From<SpendAuthorizingKey> for SpendValidatingKey {
fn from(ask: SpendAuthorizingKey) -> Self {
let sk = redpallas::SigningKey::<SpendAuth>::try_from(<[u8; 32]>::from(ask)).unwrap();
Self(redpallas::VerificationKey::from(&sk))
}
}
impl PartialEq for SpendValidatingKey {
fn eq(&self, other: &Self) -> bool {
// XXX: These redpallas::VerificationKey(Bytes) fields are pub(crate)
self.0.bytes.bytes == other.0.bytes.bytes
}
}
impl PartialEq<[u8; 32]> for SpendValidatingKey {
fn eq(&self, other: &[u8; 32]) -> bool {
// XXX: These redpallas::VerificationKey(Bytes) fields are pub(crate)
self.0.bytes.bytes == *other
}
}
/// A Orchard nullifier deriving key, as described in [protocol specification
/// §4.2.3][orchardkeycomponents].
///
/// Used to create a _Nullifier_ per note.
///
/// [orchardkeycomponents]: https://zips.z.cash/protocol/nu5.pdf#orchardkeycomponents
#[derive(Copy, Clone)]
pub struct NullifierDerivingKey(pub(crate) pallas::Base);
impl ConstantTimeEq for NullifierDerivingKey {
/// Check whether two `NullifierDerivingKey`s are equal, runtime independent
/// of the value of the secret.
fn ct_eq(&self, other: &Self) -> Choice {
self.0.to_bytes().ct_eq(&other.0.to_bytes())
}
}
impl fmt::Debug for NullifierDerivingKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("NullifierDerivingKey")
.field(&hex::encode(self.0.to_bytes()))
.finish()
}
}
impl Eq for NullifierDerivingKey {}
impl From<NullifierDerivingKey> for [u8; 32] {
fn from(nk: NullifierDerivingKey) -> [u8; 32] {
nk.0.to_bytes()
}
}
impl From<&NullifierDerivingKey> for [u8; 32] {
fn from(nk: &NullifierDerivingKey) -> [u8; 32] {
nk.0.to_bytes()
}
}
impl From<NullifierDerivingKey> for pallas::Base {
fn from(nk: NullifierDerivingKey) -> pallas::Base {
nk.0
}
}
impl From<[u8; 32]> for NullifierDerivingKey {
fn from(bytes: [u8; 32]) -> Self {
Self(pallas::Base::from_bytes(&bytes).unwrap())
}
}
impl From<SpendingKey> for NullifierDerivingKey {
/// nk = ToBase^Orchard(PRF^expand_sk ([7]))
///
/// <https://zips.z.cash/protocol/nu5.pdf#orchardkeycomponents>
fn from(sk: SpendingKey) -> Self {
Self(pallas::Base::from_bytes_wide(&prf_expand(
sk.into(),
vec![&[7]],
)))
}
}
impl PartialEq for NullifierDerivingKey {
fn eq(&self, other: &Self) -> bool {
self.ct_eq(other).unwrap_u8() == 1u8
}
}
impl PartialEq<[u8; 32]> for NullifierDerivingKey {
fn eq(&self, other: &[u8; 32]) -> bool {
self.0.to_bytes().ct_eq(other).unwrap_u8() == 1u8
}
}
/// Commit^ivk randomness.
///
/// <https://zips.z.cash/protocol/nu5.pdf#orchardkeycomponents>
// XXX: Should this be replaced by commitment::CommitmentRandomness?
#[derive(Copy, Clone)]
pub struct IvkCommitRandomness(pub(crate) pallas::Scalar);
impl ConstantTimeEq for IvkCommitRandomness {
/// Check whether two `IvkCommitRandomness`s are equal, runtime independent
/// of the value of the secret.
fn ct_eq(&self, other: &Self) -> Choice {
self.0.to_bytes().ct_eq(&other.0.to_bytes())
}
}
impl fmt::Debug for IvkCommitRandomness {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("IvkCommitRandomness")
.field(&hex::encode(self.0.to_bytes()))
.finish()
}
}
impl Eq for IvkCommitRandomness {}
impl From<SpendingKey> for IvkCommitRandomness {
/// rivk = ToScalar^Orchard(PRF^expand_sk ([8]))
///
/// <https://zips.z.cash/protocol/nu5.pdf#orchardkeycomponents>
fn from(sk: SpendingKey) -> Self {
let scalar = pallas::Scalar::from_bytes_wide(&prf_expand(sk.into(), vec![&[8]]));
Self(scalar)
}
}
impl From<IvkCommitRandomness> for [u8; 32] {
fn from(rivk: IvkCommitRandomness) -> Self {
rivk.0.into()
}
}
impl From<IvkCommitRandomness> for pallas::Scalar {
fn from(rivk: IvkCommitRandomness) -> Self {
rivk.0
}
}
impl PartialEq for IvkCommitRandomness {
fn eq(&self, other: &Self) -> bool {
self.ct_eq(other).unwrap_u8() == 1u8
}
}
impl PartialEq<[u8; 32]> for IvkCommitRandomness {
fn eq(&self, other: &[u8; 32]) -> bool {
self.0.to_bytes().ct_eq(other).unwrap_u8() == 1u8
}
}
impl TryFrom<[u8; 32]> for IvkCommitRandomness {
type Error = &'static str;
fn try_from(bytes: [u8; 32]) -> Result<Self, Self::Error> {
let possible_scalar = pallas::Scalar::from_bytes(&bytes);
if possible_scalar.is_some().into() {
Ok(Self(possible_scalar.unwrap()))
} else {
Err("Invalid pallas::Scalar value")
}
}
}
/// _Full viewing keys_
///
/// Allows recognizing both incoming and outgoing notes without having
/// spend authority.
///
/// <https://zips.z.cash/protocol/nu5.pdf#orchardfullviewingkeyencoding>
#[derive(Copy, Clone)]
pub struct FullViewingKey {
spend_validating_key: SpendValidatingKey,
nullifier_deriving_key: NullifierDerivingKey,
ivk_commit_randomness: IvkCommitRandomness,
}
impl FullViewingKey {
/// [4.2.3]: https://zips.z.cash/protocol/nu5.pdf#orchardkeycomponents
#[allow(non_snake_case)]
pub fn to_R(self) -> [u8; 64] {
// let K = I2LEBSP_l_sk(rivk)
let K: [u8; 32] = self.ivk_commit_randomness.into();
let mut t: Vec<&[u8]> = vec![&[0x82u8]];
let ak_bytes = <[u8; 32]>::from(self.spend_validating_key);
t.push(&ak_bytes);
let nk_bytes = <[u8; 32]>::from(self.nullifier_deriving_key);
t.push(&nk_bytes);
// let R = PRF^expand_K( [0x82] || I2LEOSP256(ak) || I2LEOSP256(nk) )
prf_expand(K, t)
}
}
impl ConstantTimeEq for FullViewingKey {
/// Check whether two `FullViewingKey`s are equal, runtime independent of
/// the value of the secrets.
///
/// # Note
///
/// This function short-circuits if the spend validating keys
/// are different. Otherwise, it should execute in time independent of the
/// secret component values.
fn ct_eq(&self, other: &Self) -> Choice {
if self.spend_validating_key != other.spend_validating_key {
return Choice::from(0);
}
// Uses std::ops::BitAnd
self.nullifier_deriving_key
.ct_eq(&other.nullifier_deriving_key)
& self
.ivk_commit_randomness
.ct_eq(&other.ivk_commit_randomness)
}
}
impl fmt::Debug for FullViewingKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("FullViewingKey")
.field("spend_validating_key", &self.spend_validating_key)
.field("nullifier_deriving_key", &self.nullifier_deriving_key)
.field("ivk_commit_randomness", &self.ivk_commit_randomness)
.finish()
}
}
impl fmt::Display for FullViewingKey {
/// The _raw encoding_ of an **Orchard** _full viewing key_.
///
/// <https://zips.z.cash/protocol/protocol.pdf#orchardfullviewingkeyencoding>
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str(&hex::encode(<[u8; 96]>::from(*self)))
}
}
impl From<FullViewingKey> for [u8; 96] {
fn from(fvk: FullViewingKey) -> [u8; 96] {
let mut bytes = [0u8; 96];
bytes[..32].copy_from_slice(&<[u8; 32]>::from(fvk.spend_validating_key));
bytes[32..64].copy_from_slice(&<[u8; 32]>::from(fvk.nullifier_deriving_key));
bytes[64..].copy_from_slice(&<[u8; 32]>::from(fvk.ivk_commit_randomness));
bytes
}
}
impl From<SpendingKey> for FullViewingKey {
/// Derive a _full viewing key_ from a existing _spending key_.
///
/// <https://zips.z.cash/protocol/nu5.pdf#addressesandkeys>
/// <https://zips.z.cash/protocol/nu5.pdf#orchardfullviewingkeyencoding>
fn from(sk: SpendingKey) -> FullViewingKey {
let spend_authorizing_key = SpendAuthorizingKey::from(sk);
Self {
spend_validating_key: SpendValidatingKey::from(spend_authorizing_key),
nullifier_deriving_key: NullifierDerivingKey::from(sk),
ivk_commit_randomness: IvkCommitRandomness::from(sk),
}
}
}
impl PartialEq for FullViewingKey {
fn eq(&self, other: &Self) -> bool {
self.ct_eq(other).unwrap_u8() == 1u8
}
}
/// An _incoming viewing key_, as described in [protocol specification
/// §4.2.3][ps].
///
/// Used to decrypt incoming notes without spending them.
///
/// [ps]: https://zips.z.cash/protocol/nu5.pdf#orchardkeycomponents
#[derive(Copy, Clone)]
pub struct IncomingViewingKey {
dk: DiversifierKey,
// TODO: refine type
ivk: pallas::Scalar,
}
impl ConstantTimeEq for IncomingViewingKey {
/// Check whether two `IncomingViewingKey`s are equal, runtime independent
/// of the value of the secret.
///
/// # Note
///
/// This function should execute in time independent of the `dk` and `ivk` values.
fn ct_eq(&self, other: &Self) -> Choice {
<[u8; 64]>::from(*self).ct_eq(&<[u8; 64]>::from(*other))
}
}
impl fmt::Debug for IncomingViewingKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("IncomingViewingKey")
.field("dk", &self.dk)
.field("ivk", &self.ivk)
.finish()
}
}
impl fmt::Display for IncomingViewingKey {
/// The _raw encoding_ of an **Orchard** _incoming viewing key_.
///
/// <https://zips.z.cash/protocol/protocol.pdf#orchardfullviewingkeyencoding>
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str(&hex::encode(<[u8; 64]>::from(*self)))
}
}
impl Eq for IncomingViewingKey {}
impl From<IncomingViewingKey> for [u8; 64] {
fn from(ivk: IncomingViewingKey) -> [u8; 64] {
let mut bytes = [0u8; 64];
bytes[..32].copy_from_slice(&<[u8; 32]>::from(ivk.dk));
bytes[32..].copy_from_slice(&<[u8; 32]>::from(ivk.ivk));
bytes
}
}
impl From<FullViewingKey> for IncomingViewingKey {
/// Commit^ivk_rivk(ak, nk) :=
/// SinsemillaShortCommit_rcm(︁
/// "z.cash:Orchard-CommitIvk",
/// I2LEBSP_l^Orchard_base(ak) || I2LEBSP_l^Orchard_base(nk)︁
/// ) mod r_P
///
/// <https://zips.z.cash/protocol/nu5.pdf#orchardkeycomponents>
/// <https://zips.z.cash/protocol/nu5.pdf#concreteprfs>
#[allow(non_snake_case)]
fn from(fvk: FullViewingKey) -> Self {
let mut M: BitVec<Lsb0, u8> = BitVec::new();
// I2LEBSP_l^Orchard_base(ak)︁
let ak_bytes =
extract_p(pallas::Point::from_bytes(&fvk.spend_validating_key.into()).unwrap())
.to_bytes();
M.extend_from_bitslice(&BitArray::<Lsb0, _>::from(ak_bytes)[0..255]);
// I2LEBSP_l^Orchard_base(nk)︁
let nk_bytes: [u8; 32] = fvk.nullifier_deriving_key.into();
M.extend_from_bitslice(&BitArray::<Lsb0, _>::from(nk_bytes)[0..255]);
// Commit^ivk_rivk
// rivk needs to be 255 bits long
let commit_x = sinsemilla_short_commit(
fvk.ivk_commit_randomness.into(),
b"z.cash:Orchard-CommitIvk",
&M,
)
.expect("deriving orchard commit^ivk should not output ⊥ ");
Self {
dk: fvk.into(),
// mod r_P
ivk: pallas::Scalar::from_bytes(&commit_x.into()).unwrap(),
}
}
}
impl PartialEq for IncomingViewingKey {
fn eq(&self, other: &Self) -> bool {
self.ct_eq(other).unwrap_u8() == 1u8
}
}
/// An outgoing viewing key, as described in [protocol specification
/// §4.2.3][ps].
///
/// Used to decrypt outgoing notes without spending them.
///
/// [ps]: https://zips.z.cash/protocol/nu5.pdf#orchardkeycomponents
#[derive(Copy, Clone)]
pub struct OutgoingViewingKey(pub(crate) [u8; 32]);
impl ConstantTimeEq for OutgoingViewingKey {
/// Check whether two `OutgoingViewingKey`s are equal, runtime independent
/// of the value of the secret.
fn ct_eq(&self, other: &Self) -> Choice {
self.0.ct_eq(&other.0)
}
}
impl fmt::Debug for OutgoingViewingKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("OutgoingViewingKey")
.field(&hex::encode(&self.0))
.finish()
}
}
impl Eq for OutgoingViewingKey {}
impl From<[u8; 32]> for OutgoingViewingKey {
/// Generate an `OutgoingViewingKey` from existing bytes.
fn from(bytes: [u8; 32]) -> Self {
Self(bytes)
}
}
impl From<OutgoingViewingKey> for [u8; 32] {
fn from(ovk: OutgoingViewingKey) -> [u8; 32] {
ovk.0
}
}
impl From<FullViewingKey> for OutgoingViewingKey {
/// Derive an `OutgoingViewingKey` from a `FullViewingKey`.
///
/// [4.2.3]: https://zips.z.cash/protocol/nu5.pdf#orchardkeycomponents
#[allow(non_snake_case)]
fn from(fvk: FullViewingKey) -> OutgoingViewingKey {
let R = fvk.to_R();
// let ovk be the remaining [32] bytes of R [which is 64 bytes]
let ovk_bytes: [u8; 32] = R[32..64].try_into().expect("32 byte array");
Self::from(ovk_bytes)
}
}
impl PartialEq for OutgoingViewingKey {
fn eq(&self, other: &Self) -> bool {
self.ct_eq(other).unwrap_u8() == 1u8
}
}
impl PartialEq<[u8; 32]> for OutgoingViewingKey {
fn eq(&self, other: &[u8; 32]) -> bool {
self.0.ct_eq(other).unwrap_u8() == 1u8
}
}
/// A _diversifier key_.
///
/// "We define a mechanism for deterministically deriving a sequence of
/// diversifiers, without leaking how many diversified addresses have already
/// been generated for an account. Unlike Sapling, we do so by deriving a
/// _diversifier key_ directly from the _full viewing key_, instead of as part
/// of the _extended spending key_. This means that the _full viewing key_
/// provides the capability to determine the position of a _diversifier_ within
/// the sequence, which matches the capabilities of a Sapling _extended full
/// viewing key_ but simplifies the key structure."
///
/// [4.2.3]: https://zips.z.cash/protocol/nu5.pdf#orchardkeycomponents
/// [ZIP-32]: https://zips.z.cash/zip-0032#orchard-diversifier-derivation
#[derive(Copy, Clone, Debug)]
pub struct DiversifierKey([u8; 32]);
impl ConstantTimeEq for DiversifierKey {
/// Check whether two `DiversifierKey`s are equal, runtime independent of
/// the value of the secret.
fn ct_eq(&self, other: &Self) -> Choice {
self.0.ct_eq(&other.0)
}
}
impl Eq for DiversifierKey {}
impl From<FullViewingKey> for DiversifierKey {
/// Derives a _diversifier key_ from a `FullViewingKey`.
///
/// 'For each spending key, there is also a default diversified
/// payment address with a “random-looking” diversifier. This
/// allows an implementation that does not expose diversified
/// addresses as a user-visible feature, to use a default address
/// that cannot be distinguished (without knowledge of the
/// spending key) from one with a random diversifier...'
///
/// Derived as specified in section [4.2.3] of the spec, and [ZIP-32].
///
/// [4.2.3]: https://zips.z.cash/protocol/nu5.pdf#orchardkeycomponents
/// [ZIP-32]: https://zips.z.cash/zip-0032#orchard-diversifier-derivation
#[allow(non_snake_case)]
fn from(fvk: FullViewingKey) -> DiversifierKey {
let R = fvk.to_R();
// "let dk be the first [32] bytes of R"
Self(R[..32].try_into().expect("subslice of R is a valid array"))
}
}
impl From<DiversifierKey> for [u8; 32] {
fn from(dk: DiversifierKey) -> [u8; 32] {
dk.0
}
}
impl PartialEq for DiversifierKey {
fn eq(&self, other: &Self) -> bool {
self.ct_eq(other).unwrap_u8() == 1u8
}
}
impl PartialEq<[u8; 32]> for DiversifierKey {
fn eq(&self, other: &[u8; 32]) -> bool {
self.0.ct_eq(other).unwrap_u8() == 1u8
}
}
/// A _diversifier_, as described in [protocol specification §4.2.3][ps].
///
/// [ps]: https://zips.z.cash/protocol/nu5.pdf#orchardkeycomponents
#[derive(Copy, Clone, Eq, PartialEq)]
#[cfg_attr(
any(test, feature = "proptest-impl"),
derive(proptest_derive::Arbitrary)
)]
pub struct Diversifier(pub(crate) [u8; 11]);
impl fmt::Debug for Diversifier {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("Diversifier")
.field(&hex::encode(&self.0))
.finish()
}
}
impl From<[u8; 11]> for Diversifier {
fn from(bytes: [u8; 11]) -> Self {
Self(bytes)
}
}
impl From<DiversifierKey> for Diversifier {
/// Generates the _default diversifier_, where the index into the
/// `DiversifierKey` is 0.
///
/// [orchardkeycomponents]: https://zips.z.cash/protocol/nu5.pdf#orchardkeycomponents
fn from(dk: DiversifierKey) -> Self {
Self(prp_d(dk.into(), [0u8; 11]))
}
}
impl From<Diversifier> for [u8; 11] {
fn from(d: Diversifier) -> [u8; 11] {
d.0
}
}
impl From<Diversifier> for pallas::Point {
/// Derive a _diversified base_ point.
///
/// g_d := DiversifyHash^Orchard(d)
///
/// [orchardkeycomponents]: https://zips.z.cash/protocol/nu5.pdf#orchardkeycomponents
fn from(d: Diversifier) -> Self {
diversify_hash(&d.0)
}
}
impl PartialEq<[u8; 11]> for Diversifier {
fn eq(&self, other: &[u8; 11]) -> bool {
self.0 == *other
}
}
impl TryFrom<Diversifier> for pallas::Affine {
type Error = &'static str;
/// Get a diversified base point from a diversifier value in affine
/// representation.
fn try_from(d: Diversifier) -> Result<Self, Self::Error> {
if let Ok(projective_point) = pallas::Point::try_from(d) {
Ok(projective_point.into())
} else {
Err("Invalid Diversifier -> pallas::Affine")
}
}
}
impl Diversifier {
/// Generate a new `Diversifier`.
///
/// <https://zips.z.cash/protocol/nu5.pdf#orchardkeycomponents>
pub fn new<T>(csprng: &mut T) -> Self
where
T: RngCore + CryptoRng,
{
let mut bytes = [0u8; 11];
csprng.fill_bytes(&mut bytes);
Self::from(bytes)
}
}
/// A (diversified) transmission Key
///
/// In Orchard, secrets need to be transmitted to a recipient of funds in order
/// for them to be later spent. To transmit these secrets securely to a
/// recipient without requiring an out-of-band communication channel, the
/// transmission key is used to encrypt them.
///
/// Derived by multiplying a Pallas point [derived][concretediversifyhash] from
/// a `Diversifier` by the `IncomingViewingKey` scalar.
///
/// [concretediversifyhash]: https://zips.z.cash/protocol/nu5.pdf#concretediversifyhash
/// <https://zips.z.cash/protocol/nu5.pdf#orchardkeycomponents>
#[derive(Copy, Clone, PartialEq)]
pub struct TransmissionKey(pub(crate) pallas::Affine);
impl fmt::Debug for TransmissionKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut d = f.debug_struct("TransmissionKey");
let option: Option<Coordinates<pallas::Affine>> = self.0.coordinates().into();
match option {
Some(coordinates) => d
.field("x", &hex::encode(coordinates.x().to_bytes()))
.field("y", &hex::encode(coordinates.y().to_bytes()))
.finish(),
None => d
.field("x", &hex::encode(pallas::Base::zero().to_bytes()))
.field("y", &hex::encode(pallas::Base::zero().to_bytes()))
.finish(),
}
}
}
impl Eq for TransmissionKey {}
impl From<[u8; 32]> for TransmissionKey {
/// Attempts to interpret a byte representation of an affine point, failing
/// if the element is not on the curve or non-canonical.
fn from(bytes: [u8; 32]) -> Self {
Self(pallas::Affine::from_bytes(&bytes).unwrap())
}
}
impl From<TransmissionKey> for [u8; 32] {
fn from(pk_d: TransmissionKey) -> [u8; 32] {
pk_d.0.to_bytes()
}
}
impl From<(IncomingViewingKey, Diversifier)> for TransmissionKey {
/// This includes _KA^Orchard.DerivePublic(ivk, G_d)_, which is just a
/// scalar mult _\[ivk\]G_d_.
///
/// KA^Orchard.DerivePublic(sk, B) := [sk] B
///
/// <https://zips.z.cash/protocol/nu5.pdf#orchardkeycomponents>
/// <https://zips.z.cash/protocol/nu5.pdf#concreteorchardkeyagreement>
fn from((ivk, d): (IncomingViewingKey, Diversifier)) -> Self {
let g_d = pallas::Point::from(d);
Self(pallas::Affine::from(g_d * ivk.ivk))
}
}
impl PartialEq<[u8; 32]> for TransmissionKey {
fn eq(&self, other: &[u8; 32]) -> bool {
&self.0.to_bytes() == other
}
}
/// An _outgoing cipher key_ for Orchard note encryption/decryption.
///
/// <https://zips.z.cash/protocol/nu5.pdf#saplingandorchardencrypt>
// TODO: derive `OutgoingCipherKey`: https://github.com/ZcashFoundation/zebra/issues/2041
#[derive(Copy, Clone, PartialEq)]
pub struct OutgoingCipherKey([u8; 32]);
impl fmt::Debug for OutgoingCipherKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("OutgoingCipherKey")
.field(&hex::encode(self.0))
.finish()
}
}
impl From<&OutgoingCipherKey> for [u8; 32] {
fn from(ock: &OutgoingCipherKey) -> [u8; 32] {
ock.0
}