-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
103 lines (84 loc) · 3.63 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import argparse #for parsing command line arguments
import cv2.dnn #deep learning module opencv
import numpy as np # numpy for numerical operations
#import utilities for handling assets and configurations
from ultralytics.utils import ASSETS, yaml_load
from ultralytics.utils.checks import check_yaml
#load class labels from a yaml file pretrained from yolov8
CLASSES = yaml_load(check_yaml("coco128.yaml"))["names"]
#color generation for each class label
colors = np.random.uniform(0, 255, size=(len(CLASSES), 3))
# draws bounding boxes around objects
def draw_bounding_box(img, class_id, confidence, x, y, x_plus_w, y_plus_h):
label = f"{CLASSES[class_id]} ({confidence:.2f})"
color = colors[class_id]
cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2)
cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
def main(onnx_model):
#load the ONNX model
model = cv2.dnn.readNetFromONNX(onnx_model)
#start capturing video from the webcam
cap = cv2.VideoCapture(0)
while True:
ret, original_image = cap.read() #read frames
if not ret:
break
[height, width, _] = original_image.shape
#prep a square image for inference as before
length = max(height, width)
image = np.zeros((length, length, 3), np.uint8)
image[0:height, 0:width] = original_image
#calculate scale factor and preprocess the image
scale = length / 640
blob = cv2.dnn.blobFromImage(image, scalefactor=1 / 255, size=(640, 640), swapRB=True)
model.setInput(blob)
#perform inference and process outputs as before
outputs = model.forward()
outputs = np.array([cv2.transpose(outputs[0])])
rows = outputs.shape[1]
#lists to store objects details
boxes = []
scores = []
class_ids = []
#process the model output
for i in range(rows):
classes_scores = outputs[0][i][4:]
(minScore, maxScore, minClassLoc, (x, maxClassIndex)) = cv2.minMaxLoc(classes_scores)
if maxScore >= 0.25: #filter out detections with low confidence
box = [
outputs[0][i][0] - (0.5 * outputs[0][i][2]),
outputs[0][i][1] - (0.5 * outputs[0][i][3]),
outputs[0][i][2],
outputs[0][i][3],
]
boxes.append(box)
scores.append(maxScore)
class_ids.append(maxClassIndex)
#non-max suppression to refine the detections and prevent overlapping bounding boxes
result_boxes = cv2.dnn.NMSBoxes(boxes, scores, 0.25, 0.45, 0.5)
#draw bounding boxes for the remaining detections
for i in range(len(result_boxes)):
index = result_boxes[i]
box = boxes[index]
draw_bounding_box(
original_image,
class_ids[index],
scores[index],
round(box[0] * scale),
round(box[1] * scale),
round((box[0] + box[2]) * scale),
round((box[1] + box[3]) * scale),
)
#display the image with bounding boxes
cv2.imshow("YOLOv8 Real-Time Detection", original_image)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
#release camera and close cv2 windows
cap.release()
cv2.destroyAllWindows()
#parse cmd line arguments for model path
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", default="yolov8n.onnx", help="Path to your ONNX model.")
args = parser.parse_args()
main(args.model)