-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdraw_transform.py
55 lines (48 loc) · 1.69 KB
/
draw_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import pywt
from matplotlib import pyplot as plt
import numpy as np
import scipy.io as scio
from scipy import signal
filename = '130'
datapath = f'cwru/12k Drive End Bearing Fault Data/{filename}.mat'
def show_STFT(data):
fs = 12000 # sampling frequency
amp = 2 * np.sqrt(2)
per_seg_length = 200 # window length
f, t, Zxx = signal.stft(data, fs, nperseg=per_seg_length, noverlap=0, nfft=per_seg_length, padded=False)
plt.figure()
ax2 = plt.subplot()
ax2.pcolormesh(t, f, np.abs(Zxx))
plt.title('STFT')
ax2.set_ylabel('Frequency [Hz]')
ax2.set_xlabel('Time [sec]')
plt.savefig(f'picture_transform/STFT/STFT{filename}')
plt.show()
def show_cwt(data):
t = np.arange(0, 2048 / 12000, 1.0 / 12000)
wavename = 'morl'
totalscal = 256 # scale
fc = pywt.central_frequency(wavename) # central frequency
cparam = 2 * fc * totalscal
scales = cparam / np.arange(1, totalscal + 1)
[cwtmatr_l, frequencies_l] = pywt.cwt(data, scales, wavename, 1.0 / 12000) # continuous wavelet transform
plt.figure()
plt.contourf(t, frequencies_l, abs(cwtmatr_l), levels=np.linspace(0, 1.2, 40), extend='both')
plt.title('CWT')
plt.ylabel("Frequency [Hz]")
plt.xlabel("Time [sec]")
plt.axis('on')
# plt.savefig('test%.f.png' % (i), bbox_inches='tight', pad_inches=-0.1) # 保存图像不显示白色边框
plt.savefig(f'picture_transform/CWT/CWT{filename}')
plt.colorbar()
plt.show()
if __name__ == '__main__':
data = scio.loadmat(datapath)
data = data[f'X{filename}_DE_time']
print(data.shape)
L = 2048
data1 = np.zeros(L)
for i in range(L):
data1[i] = data[i]
show_STFT(data1)
show_cwt(data1)