forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
modeling_openai.py
811 lines (700 loc) · 36.9 KB
/
modeling_openai.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""
import collections
import copy
import json
import logging
import math
import os
import shutil
import tarfile
import tempfile
import sys
from io import open
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from torch.nn.parameter import Parameter
from .file_utils import cached_path
from .modeling import BertLayerNorm as LayerNorm
logger = logging.getLogger(__name__)
PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-pytorch_model.bin"}
PRETRAINED_CONFIG_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-config.json"}
CONFIG_NAME = "config.json"
WEIGHTS_NAME = "pytorch_model.bin"
def load_tf_weights_in_openai_gpt(model, openai_checkpoint_folder_path):
""" Load tf pre-trained weights in a pytorch model (from NumPy arrays here)
"""
import re
import numpy as np
print("Loading weights...")
names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8'))
shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8'))
offsets = np.cumsum([np.prod(shape) for shape in shapes])
init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)]
init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]
# This was used when we had a single embedding matrix for positions and tokens
# init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
# del init_params[1]
init_params = [arr.squeeze() for arr in init_params]
try:
assert model.tokens_embed.weight.shape == init_params[1].shape
assert model.positions_embed.weight.shape == init_params[0].shape
except AssertionError as e:
e.args += (model.tokens_embed.weight.shape, init_params[1].shape)
e.args += (model.positions_embed.weight.shape, init_params[0].shape)
raise
model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
model.positions_embed.weight.data = torch.from_numpy(init_params[0])
names.pop(0)
# Pop position and token embedding arrays
init_params.pop(0)
init_params.pop(0)
for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
name = name[6:] # skip "model/"
assert name[-2:] == ":0"
name = name[:-2]
name = name.split('/')
pointer = model
for m_name in name:
if re.fullmatch(r'[A-Za-z]+\d+', m_name):
l = re.split(r'(\d+)', m_name)
else:
l = [m_name]
if l[0] == 'g':
pointer = getattr(pointer, 'weight')
elif l[0] == 'b':
pointer = getattr(pointer, 'bias')
elif l[0] == 'w':
pointer = getattr(pointer, 'weight')
else:
pointer = getattr(pointer, l[0])
if len(l) >= 2:
num = int(l[1])
pointer = pointer[num]
try:
assert pointer.shape == array.shape
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
try:
assert pointer.shape == array.shape
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
print("Initialize PyTorch weight {}".format(name))
pointer.data = torch.from_numpy(array)
return model
def gelu(x):
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
def swish(x):
return x * torch.sigmoid(x)
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}
class OpenAIGPTConfig(object):
"""Configuration class to store the configuration of a `OpenAIGPTModel`.
"""
def __init__(
self,
vocab_size_or_config_json_file=40478,
n_special=0,
n_positions=512,
n_ctx=512,
n_embd=768,
n_layer=12,
n_head=12,
afn="gelu",
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
):
"""Constructs OpenAIGPTConfig.
Args:
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file.
n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
n_positions: Number of positional embeddings.
n_ctx: Size of the causal mask (usually same as n_positions).
n_embd: Dimensionality of the embeddings and hidden states.
n_layer: Number of hidden layers in the Transformer encoder.
n_head: Number of attention heads for each attention layer in
the Transformer encoder.
afn: The non-linear activation function (function or string) in the
encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
resid_pdrop: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
attn_pdrop: The dropout ratio for the attention
probabilities.
embd_pdrop: The dropout ratio for the embeddings.
layer_norm_epsilon: epsilon to use in the layer norm layers
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
"""
if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
and isinstance(vocab_size_or_config_json_file, unicode)):
with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
json_config = json.loads(reader.read())
for key, value in json_config.items():
self.__dict__[key] = value
elif isinstance(vocab_size_or_config_json_file, int):
self.vocab_size = vocab_size_or_config_json_file
self.n_special = n_special
self.n_ctx = n_ctx
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.afn = afn
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
else:
raise ValueError(
"First argument must be either a vocabulary size (int)"
"or the path to a pretrained model config file (str)"
)
@property
def total_tokens_embeddings(self):
return self.vocab_size + self.n_special
@classmethod
def from_dict(cls, json_object):
"""Constructs a `OpenAIGPTConfig` from a Python dictionary of parameters."""
config = OpenAIGPTConfig(vocab_size_or_config_json_file=-1)
for key, value in json_object.items():
config.__dict__[key] = value
return config
@classmethod
def from_json_file(cls, json_file):
"""Constructs a `OpenAIGPTConfig` from a json file of parameters."""
with open(json_file, "r", encoding="utf-8") as reader:
text = reader.read()
return cls.from_dict(json.loads(text))
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
class Conv1D(nn.Module):
def __init__(self, nf, rf, nx):
super(Conv1D, self).__init__()
self.rf = rf
self.nf = nf
if rf == 1: # faster 1x1 conv
w = torch.empty(nx, nf)
nn.init.normal_(w, std=0.02)
self.weight = Parameter(w)
self.bias = Parameter(torch.zeros(nf))
else: # was used to train LM
raise NotImplementedError
def forward(self, x):
if self.rf == 1:
size_out = x.size()[:-1] + (self.nf,)
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
x = x.view(*size_out)
else:
raise NotImplementedError
return x
class Attention(nn.Module):
def __init__(self, nx, n_ctx, config, scale=False):
super(Attention, self).__init__()
n_state = nx # in Attention: n_state=768 (nx=n_embd)
# [switch nx => n_state from Block to Attention to keep identical to TF implem]
assert n_state % config.n_head == 0
self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
self.n_head = config.n_head
self.split_size = n_state
self.scale = scale
self.c_attn = Conv1D(n_state * 3, 1, nx)
self.c_proj = Conv1D(n_state, 1, nx)
self.attn_dropout = nn.Dropout(config.attn_pdrop)
self.resid_dropout = nn.Dropout(config.resid_pdrop)
def _attn(self, q, k, v):
w = torch.matmul(q, k)
if self.scale:
w = w / math.sqrt(v.size(-1))
# w = w * self.bias + -1e9 * (1 - self.bias) # TF implem method: mask_attn_weights
# XD: self.b may be larger than w, so we need to crop it
b = self.bias[:, :, : w.size(-2), : w.size(-1)]
w = w * b + -1e9 * (1 - b)
w = nn.Softmax(dim=-1)(w)
w = self.attn_dropout(w)
return torch.matmul(w, v)
def merge_heads(self, x):
x = x.permute(0, 2, 1, 3).contiguous()
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states
def split_heads(self, x, k=False):
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states
if k:
return x.permute(0, 2, 3, 1)
else:
return x.permute(0, 2, 1, 3)
def forward(self, x):
x = self.c_attn(x)
query, key, value = x.split(self.split_size, dim=2)
query = self.split_heads(query)
key = self.split_heads(key, k=True)
value = self.split_heads(value)
a = self._attn(query, key, value)
a = self.merge_heads(a)
a = self.c_proj(a)
a = self.resid_dropout(a)
return a
class MLP(nn.Module):
def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd)
super(MLP, self).__init__()
nx = config.n_embd
self.c_fc = Conv1D(n_state, 1, nx)
self.c_proj = Conv1D(nx, 1, n_state)
self.act = ACT_FNS[config.afn]
self.dropout = nn.Dropout(config.resid_pdrop)
def forward(self, x):
h = self.act(self.c_fc(x))
h2 = self.c_proj(h)
return self.dropout(h2)
class Block(nn.Module):
def __init__(self, n_ctx, config, scale=False):
super(Block, self).__init__()
nx = config.n_embd
self.attn = Attention(nx, n_ctx, config, scale)
self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
self.mlp = MLP(4 * nx, config)
self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
def forward(self, x):
a = self.attn(x)
n = self.ln_1(x + a)
m = self.mlp(n)
h = self.ln_2(n + m)
return h
class OpenAIGPTLMHead(nn.Module):
""" Language Model Head for the transformer """
def __init__(self, model_embeddings_weights, config):
super(OpenAIGPTLMHead, self).__init__()
self.n_embd = config.n_embd
self.set_embeddings_weights(model_embeddings_weights)
def set_embeddings_weights(self, model_embeddings_weights):
embed_shape = model_embeddings_weights.shape
self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
self.decoder.weight = model_embeddings_weights # Tied weights
def forward(self, hidden_state):
# Truncated Language modeling logits (we remove the last token)
# h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd)
lm_logits = self.decoder(hidden_state)
return lm_logits
class OpenAIGPTMultipleChoiceHead(nn.Module):
""" Classifier Head for the transformer """
def __init__(self, config):
super(OpenAIGPTMultipleChoiceHead, self).__init__()
self.n_embd = config.n_embd
# self.multiple_choice_token = multiple_choice_token
self.dropout = nn.Dropout2d(config.resid_pdrop) # To reproduce the noise_shape parameter of TF implementation
self.linear = nn.Linear(config.n_embd, 1)
nn.init.normal_(self.linear.weight, std=0.02)
nn.init.normal_(self.linear.bias, 0)
def forward(self, hidden_states, mc_token_ids):
# Classification logits
# hidden_state (bsz, num_choices, seq_length, hidden_size)
# mc_token_ids (bsz, num_choices)
mc_token_ids = mc_token_ids.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, -1, hidden_states.size(-1))
# (bsz, num_choices, 1, hidden_size)
multiple_choice_h = hidden_states.gather(2, mc_token_ids).squeeze(2)
# (bsz, num_choices, hidden_size)
multiple_choice_h = self.dropout(multiple_choice_h.transpose(1, 2)).transpose(1, 2)
multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1)
# (bsz, num_choices)
return multiple_choice_logits
class OpenAIGPTPreTrainedModel(nn.Module):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
def __init__(self, config, *inputs, **kwargs):
super(OpenAIGPTPreTrainedModel, self).__init__()
if not isinstance(config, OpenAIGPTConfig):
raise ValueError(
"Parameter config in `{}(config)` should be an instance of class `OpenAIGPTConfig`. "
"To create a model from a pretrained model use "
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
self.__class__.__name__, self.__class__.__name__
)
)
self.config = config
def init_weights(self, module):
""" Initialize the weights.
"""
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def set_num_special_tokens(self, num_special_tokens):
pass
@classmethod
def from_pretrained(
cls, pretrained_model_name_or_path, num_special_tokens=None, state_dict=None, cache_dir=None, from_tf=False, *inputs, **kwargs
):
"""
Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
Download and cache the pre-trained model file if needed.
Params:
pretrained_model_name_or_path: either:
- a str with the name of a pre-trained model to load selected in the list of:
. `openai-gpt`
- a path or url to a pretrained model archive containing:
. `openai_gpt_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance
- a path or url to a pretrained model archive containing:
. `bert_config.json` a configuration file for the model
. a series of NumPy files containing OpenAI TensorFlow trained weights
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
*inputs, **kwargs: additional input for the specific Bert class
(ex: num_labels for BertForSequenceClassification)
"""
if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
else:
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
# redirect to the cache, if necessary
try:
resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
except EnvironmentError:
logger.error(
"Model name '{}' was not found in model name list ({}). "
"We assumed '{}' was a path or url but couldn't find files {} and {} "
"at this path or url.".format(
pretrained_model_name_or_path, ", ".join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), pretrained_model_name_or_path,
archive_file, config_file
)
)
return None
if resolved_archive_file == archive_file and resolved_config_file == config_file:
logger.info("loading weights file {}".format(archive_file))
logger.info("loading configuration file {}".format(config_file))
else:
logger.info("loading weights file {} from cache at {}".format(
archive_file, resolved_archive_file))
logger.info("loading configuration file {} from cache at {}".format(
config_file, resolved_config_file))
# Load config
config = OpenAIGPTConfig.from_json_file(resolved_config_file)
logger.info("Model config {}".format(config))
# Instantiate model.
model = cls(config, *inputs, **kwargs)
if state_dict is None and not from_tf:
state_dict = torch.load(resolved_archive_file, map_location='cpu' if not torch.cuda.is_available() else None)
if from_tf:
# Directly load from a TensorFlow checkpoint (stored as NumPy array)
return load_tf_weights_in_openai_gpt(model, resolved_archive_file)
old_keys = []
new_keys = []
for key in state_dict.keys():
new_key = None
if key.endswith(".g"):
new_key = key[:-2] + ".weight"
elif key.endswith(".b"):
new_key = key[:-2] + ".bias"
elif key.endswith(".w"):
new_key = key[:-2] + ".weight"
if new_key:
old_keys.append(key)
new_keys.append(new_key)
for old_key, new_key in zip(old_keys, new_keys):
state_dict[new_key] = state_dict.pop(old_key)
missing_keys = []
unexpected_keys = []
error_msgs = []
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, "_metadata", None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
def load(module, prefix=""):
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
module._load_from_state_dict(
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + ".")
start_model = model
if hasattr(model, "transformer") and all(not s.startswith('transformer.') for s in state_dict.keys()):
start_model = model.transformer
load(start_model, prefix="")
if len(missing_keys) > 0:
logger.info(
"Weights of {} not initialized from pretrained model: {}".format(model.__class__.__name__, missing_keys)
)
if len(unexpected_keys) > 0:
logger.info(
"Weights from pretrained model not used in {}: {}".format(model.__class__.__name__, unexpected_keys)
)
if len(error_msgs) > 0:
raise RuntimeError(
"Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs))
)
# Add additional embeddings for special tokens if needed
# This step also make sure we are still sharing the output and input embeddings after loading weights
model.set_num_special_tokens(num_special_tokens if num_special_tokens is not None else config.n_special)
return model
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
"""OpenAI GPT model ("Improving Language Understanding by Generative Pre-Training").
OpenAI GPT use a single embedding matrix to store the word and special embeddings.
Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
Special tokens need to be trained during the fine-tuning if you use them.
The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.
The embeddings are ordered as follow in the token embeddings matrice:
[0, ----------------------
... -> word embeddings
config.vocab_size - 1, ______________________
config.vocab_size,
... -> special embeddings
config.vocab_size + config.n_special - 1] ______________________
where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
total_tokens_embeddings = config.vocab_size + config.n_special
You should use the associate indices to index the embeddings.
Params:
config: a OpenAIGPTConfig class instance with the configuration to build a new model
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
`position_ids`: an optional torch.LongTensor with the same shape as input_ids
with the position indices (selected in the range [0, config.n_positions - 1[.
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
You can use it to add a third type of embedding to each input token in the sequence
(the previous two being the word and position embeddings).
The input, position and token_type embeddings are summed inside the Transformer before the first
self-attention block.
Outputs:
`hidden_states`: the encoded-hidden-states at the top of the model
as a torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
(or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)
Example usage:
```python
# Already been converted into BPE token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
config = modeling_openai.OpenAIGPTConfig()
model = modeling_openai.OpenAIGPTModel(config)
hidden_states = model(input_ids)
```
"""
def __init__(self, config):
super(OpenAIGPTModel, self).__init__(config)
num_tokens = config.vocab_size + config.n_special
self.tokens_embed = nn.Embedding(num_tokens, config.n_embd)
self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
self.drop = nn.Dropout(config.embd_pdrop)
block = Block(config.n_ctx, config, scale=True)
self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
self.apply(self.init_weights)
# nn.init.normal_(self.embed.weight, std=0.02)
def set_num_special_tokens(self, num_special_tokens):
" Update input embeddings with new embedding matrice if needed "
if self.config.n_special == num_special_tokens:
return
# Update config
self.config.n_special = num_special_tokens
# # Build new embeddings and initialize
old_embed = self.tokens_embed
self.tokens_embed = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd)
# Initialize all new embeddings (in particular the special tokens)
self.init_weights(self.tokens_embed)
# Copy word and positional embeddings from the previous weights
self.tokens_embed.weight.data[: self.config.vocab_size, :] = old_embed.weight.data[: self.config.vocab_size, :]
self.tokens_embed.weight.data[-self.config.n_positions :, :] = old_embed.weight.data[-self.config.n_positions :, :]
def forward(self, input_ids, position_ids=None, token_type_ids=None):
if position_ids is None:
# This was used when we had a single embedding matrice from position and token embeddings
# start = self.config.vocab_size + self.config.n_special
# end = start + input_ids.size(-1)
# position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_ids.size(-1))
position_ids = position_ids.view(-1, position_ids.size(-1))
inputs_embeds = self.tokens_embed(input_ids)
position_embeds = self.positions_embed(position_ids)
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
token_type_embeds = self.tokens_embed(token_type_ids)
else:
token_type_embeds = 0
# Add the position information to the input embeddings
# h = e.sum(dim=2)
hidden_states = inputs_embeds + position_embeds + token_type_embeds
for block in self.h:
hidden_states = block(hidden_states)
output_shape = input_shape + (hidden_states.size(-1),)
return hidden_states.view(*output_shape)
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
"""OpenAI GPT model with a Language Modeling head ("Improving Language Understanding by Generative Pre-Training").
OpenAI GPT use a single embedding matrix to store the word and special embeddings.
Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
Special tokens need to be trained during the fine-tuning if you use them.
The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.
The embeddings are ordered as follow in the token embeddings matrice:
[0, ----------------------
... -> word embeddings
config.vocab_size - 1, ______________________
config.vocab_size,
... -> special embeddings
config.vocab_size + config.n_special - 1] ______________________
where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
total_tokens_embeddings = config.vocab_size + config.n_special
You should use the associate indices to index the embeddings.
Params:
config: a OpenAIGPTConfig class instance with the configuration to build a new model
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
`position_ids`: an optional torch.LongTensor with the same shape as input_ids
with the position indices (selected in the range [0, config.n_positions - 1[.
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
You can use it to add a third type of embedding to each input token in the sequence
(the previous two being the word and position embeddings).
The input, position and token_type embeddings are summed inside the Transformer before the first
self-attention block.
`lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
is only computed for the labels set in [0, ..., vocab_size]
Outputs:
if `lm_labels` is not `None`:
Outputs the language modeling loss.
else:
`lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, total_tokens_embeddings]
(or more generally [d_1, ..., d_n, total_tokens_embeddings] were d_1 ... d_n are the dimension of input_ids)
Example usage:
```python
# Already been converted into BPE token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
config = modeling_openai.OpenAIGPTConfig()
model = modeling_openai.OpenAIGPTLMHeadModel(config)
lm_logits = model(input_ids)
```
"""
def __init__(self, config):
super(OpenAIGPTLMHeadModel, self).__init__(config)
self.transformer = OpenAIGPTModel(config)
self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
self.apply(self.init_weights)
def set_num_special_tokens(self, num_special_tokens):
""" Update input and output embeddings with new embedding matrice
Make sure we are sharing the embeddings
"""
self.transformer.set_num_special_tokens(num_special_tokens)
self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight)
def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None):
hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
lm_logits = self.lm_head(hidden_states)
if lm_labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-1)
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1))
return loss
return lm_logits
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
"""OpenAI GPT model with a Language Modeling and a Multiple Choice head ("Improving Language Understanding by Generative Pre-Training").
OpenAI GPT use a single embedding matrix to store the word and special embeddings.
Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
Special tokens need to be trained during the fine-tuning if you use them.
The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.
The embeddings are ordered as follow in the token embeddings matrice:
[0, ----------------------
... -> word embeddings
config.vocab_size - 1, ______________________
config.vocab_size,
... -> special embeddings
config.vocab_size + config.n_special - 1] ______________________
where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
total_tokens_embeddings = config.vocab_size + config.n_special
You should use the associate indices to index the embeddings.
Params:
config: a OpenAIGPTConfig class instance with the configuration to build a new model
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the BPE token
indices selected in the range [0, total_tokens_embeddings[
`mc_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token from
which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence)
`position_ids`: an optional torch.LongTensor with the same shape as input_ids
with the position indices (selected in the range [0, config.n_positions - 1[.
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
You can use it to add a third type of embedding to each input token in the sequence
(the previous two being the word and position embeddings).
The input, position and token_type embeddings are summed inside the Transformer before the first
self-attention block.
`lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
with indices selected in [-1, 0, ..., total_tokens_embeddings]. All labels set to -1 are ignored (masked), the loss
is only computed for the labels set in [0, ..., total_tokens_embeddings]
`multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
with indices selected in [0, ..., num_choices].
Outputs:
if `lm_labels` and `multiple_choice_labels` are not `None`:
Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
else: a tuple with
`lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, total_tokens_embeddings]
`multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]
Example usage:
```python
# Already been converted into BPE token ids
input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]]) # (bsz, number of choice, seq length)
mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice)
config = modeling_openai.OpenAIGPTConfig()
model = modeling_openai.OpenAIGPTLMHeadModel(config)
lm_logits, multiple_choice_logits = model(input_ids, mc_token_ids)
```
"""
def __init__(self, config):
super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
self.transformer = OpenAIGPTModel(config)
self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
self.multiple_choice_head = OpenAIGPTMultipleChoiceHead(config)
self.apply(self.init_weights)
def set_num_special_tokens(self, num_special_tokens):
""" Update input and output embeddings with new embedding matrice
Make sure we are sharing the embeddings
"""
self.transformer.set_num_special_tokens(num_special_tokens)
self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight)
def forward(self, input_ids, mc_token_ids, lm_labels=None, mc_labels=None, token_type_ids=None, position_ids=None):
hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
lm_logits = self.lm_head(hidden_states)
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids)
losses = []
if lm_labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-1)
losses.append(loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1)))
if mc_labels is not None:
loss_fct = CrossEntropyLoss()
losses.append(loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)))
if losses:
return losses
return lm_logits, mc_logits