-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
all_interval_series.py
78 lines (71 loc) · 2.33 KB
/
all_interval_series.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# Copyright Microsoft Research 2016
# The following script finds sequences of length n-1 of
# integers 0,..,n-1 such that the difference of the n-1
# adjacent entries fall in the range 0,..,n-1
# This is known as the "The All-Interval Series Problem"
# See http://www.csplib.org/Problems/prob007/
from __future__ import print_function
from z3 import *
import time
set_option("sat.gc.burst", False) # disable GC at every search. It is wasteful for these small queries.
def diff_at_j_is_i(xs, j, i):
assert(0 <= j and j + 1 < len(xs))
assert(1 <= i and i < len(xs))
return Or([ And(xs[j][k], xs[j+1][k-i]) for k in range(i,len(xs))] +
[ And(xs[j][k], xs[j+1][k+i]) for k in range(0,len(xs)-i)])
def ais(n):
xij = [ [ Bool("x_%d_%d" % (i,j)) for j in range(n)] for i in range(n) ]
s = SolverFor("QF_FD")
# Optionally replace by (slower) default solver if using
# more then just finite domains (Booleans, Bit-vectors, enumeration types
# and bounded integers)
# s = Solver()
for i in range(n):
s.add(AtMost(xij[i] + [1]))
s.add(Or(xij[i]))
for j in range(n):
xi = [ xij[i][j] for i in range(n) ]
s.add(AtMost(xi + [1]))
s.add(Or(xi))
dji = [ [ diff_at_j_is_i(xij, j, i + 1) for i in range(n-1)] for j in range(n-1) ]
for j in range(n-1):
s.add(AtMost(dji[j] + [1]))
s.add(Or(dji[j]))
for i in range(n-1):
dj = [dji[j][i] for j in range(n-1)]
s.add(AtMost(dj + [1]))
s.add(Or(dj))
return s, xij
def process_model(s, xij, n):
# x_ij integer i is at position j
# d_ij difference between integer at position j, j+1 is i
# sum_j d_ij = 1 i = 1,...,n-1
# sum_j x_ij = 1
# sum_i x_ij = 1
m = s.model()
block = []
values = []
for i in range(n):
k = -1
for j in range(n):
if is_true(m.eval(xij[i][j])):
assert(k == -1)
block += [xij[i][j]]
k = j
values += [k]
print(values)
sys.stdout.flush()
return block
def all_models(n):
count = 0
s, xij = ais(n)
start = time.time()
while sat == s.check():
block = process_model(s, xij, n)
s.add(Not(And(block)))
count += 1
print(s.statistics())
print(time.time() - start)
print(count)
set_option(verbose=1)
all_models(12)