forked from open-mmlab/mmagic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tdan_x4_8xb16-lr1e-4-400k_vimeo90k-bd.py
119 lines (106 loc) · 3.52 KB
/
tdan_x4_8xb16-lr1e-4-400k_vimeo90k-bd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
_base_ = [
'../_base_/default_runtime.py', '../_base_/datasets/tdan_test_config.py'
]
experiment_name = 'tdan_x4_1xb16-lr1e-4-400k_vimeo90k-bd'
work_dir = f'./work_dirs/{experiment_name}'
save_dir = './work_dirs/'
scale = 4
# model settings
model = dict(
type='TDAN',
generator=dict(
type='TDANNet',
in_channels=3,
mid_channels=64,
out_channels=3,
num_blocks_before_align=5,
num_blocks_after_align=10),
pixel_loss=dict(type='MSELoss', loss_weight=1.0, reduction='mean'),
lq_pixel_loss=dict(type='MSELoss', loss_weight=0.01, reduction='mean'),
data_preprocessor=dict(
type='EditDataPreprocessor',
mean=[0.5 * 255, 0.5 * 255, 0.5 * 255],
std=[255, 255, 255],
))
val_evaluator = dict(
type='EditEvaluator',
metrics=[
dict(type='PSNR', crop_border=8, convert_to='Y'),
dict(type='SSIM', crop_border=8, convert_to='Y'),
])
train_pipeline = [
dict(type='LoadImageFromFile', key='img', channel_order='rgb'),
dict(type='LoadImageFromFile', key='gt', channel_order='rgb'),
dict(type='SetValues', dictionary=dict(scale=scale)),
dict(type='PairedRandomCrop', gt_patch_size=192),
dict(
type='Flip',
keys=['img', 'gt'],
flip_ratio=0.5,
direction='horizontal'),
dict(
type='Flip', keys=['img', 'gt'], flip_ratio=0.5, direction='vertical'),
dict(type='RandomTransposeHW', keys=['img', 'gt'], transpose_ratio=0.5),
dict(type='PackEditInputs')
]
val_pipeline = [
dict(type='GenerateFrameIndiceswithPadding', padding='reflection'),
dict(type='LoadImageFromFile', key='img', channel_order='rgb'),
dict(type='LoadImageFromFile', key='gt', channel_order='rgb'),
dict(type='PackEditInputs')
]
demo_pipeline = [
dict(type='GenerateSegmentIndices', interval_list=[1]),
dict(type='LoadImageFromFile', key='img', channel_order='rgb'),
dict(type='PackEditInputs')
]
data_root = 'data'
train_dataloader = dict(
num_workers=8,
batch_size=16,
persistent_workers=False,
sampler=dict(type='InfiniteSampler', shuffle=True),
dataset=dict(
type='BasicFramesDataset',
metainfo=dict(dataset_type='vimeo_seq', task_name='vsr'),
data_root=f'{data_root}/vimeo90k',
data_prefix=dict(img='BDx4', gt='GT'),
ann_file='meta_info_Vimeo90K_train_GT.txt',
depth=2,
num_input_frames=5,
fixed_seq_len=7,
load_frames_list=dict(
img=['im2.png', 'im3.png', 'im4.png', 'im5.png', 'im6.png'],
gt=['im4.png']),
pipeline=train_pipeline))
val_dataloader = dict(
num_workers=1,
batch_size=1,
persistent_workers=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type='BasicFramesDataset',
metainfo=dict(dataset_type='vid4', task_name='vsr'),
data_root=f'{data_root}/Vid4',
data_prefix=dict(img='BDx4', gt='GT'),
ann_file='meta_info_Vid4_GT.txt',
depth=2,
num_input_frames=5,
pipeline=val_pipeline))
# optimizer
optim_wrapper = dict(
constructor='DefaultOptimWrapperConstructor',
type='OptimWrapper',
optimizer=dict(type='Adam', lr=1e-4, weight_decay=1e-6),
)
train_cfg = dict(
type='IterBasedTrainLoop', max_iters=400_000, val_interval=50000)
val_cfg = dict(type='EditValLoop')
# No learning policy
default_hooks = dict(
checkpoint=dict(
type='CheckpointHook',
interval=50000,
save_optimizer=True,
out_dir=save_dir,
by_epoch=False))