-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathevaluate_metrics.py
60 lines (46 loc) · 1.74 KB
/
evaluate_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import os
import sys
from pprint import pprint
from pycocoevalcap.bleu.bleu import Bleu
from pycocoevalcap.meteor.meteor import Meteor
from pycocoevalcap.rouge.rouge import Rouge
def text_load(filename):
with open(filename, 'r', encoding='utf-8') as f:
data = f.read().strip().strip('===========================').strip()
data = data.split('\n===========================\n')
data = [sample.strip().split('\n') for sample in data]
gold = [sample[1].strip().split('\t')[1].lower() for sample in data]
pred = [sample[2].strip().split('\t')[1].lower() for sample in data]
return gold, pred
if __name__ == "__main__":
ground_turth, predictions = text_load(sys.argv[1])
scorers = {
"Bleu": Bleu(4),
"Meteor": Meteor(),
"Rouge": Rouge()
}
gts = {}
res = {}
if len(predictions) == len(ground_turth):
for ind, value in enumerate(predictions):
# print(value)
res[ind] = [value]
for ind, value in enumerate(ground_turth):
gts[ind] = [value]
else:
Min_Len = min(len(predictions), len(ground_turth))
for ind in range(Min_Len):
res[ind] = [predictions[ind]]
gts[ind] = [ground_turth[ind]]
# param gts: Dictionary of reference sentences (id, sentence)
# param res: Dictionary of hypothesis sentences (id, sentence)
print('samples: {} / {}'.format(len(res.keys()), len(gts.keys())))
scores = {}
for name, scorer in scorers.items():
score, all_scores = scorer.compute_score(gts, res)
if isinstance(score, list):
for i, sc in enumerate(score, 1):
scores[name + str(i)] = sc
else:
scores[name] = score
pprint(scores)