-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_middle_transformer.py
671 lines (574 loc) · 22.7 KB
/
train_middle_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 Alan Zhao. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# """
# Pre-train the BERT on a dataset without using HuggingFace Trainer.
# """
# You can also adapt this script on your own mlm task. Pointers for this are left as comments.
import argparse
import logging
import math
import os
import pdb
import random
import datasets
import numpy as np
import tokenizers
import torch
import transformers
from accelerate import Accelerator
from datasets import load_dataset
from tokenizers.processors import TemplateProcessing
from torch.nn import DataParallel
from torch.nn.functional import cosine_similarity
from torch.utils.data.dataloader import DataLoader
from tqdm.auto import tqdm
from transformers import (
CONFIG_MAPPING,
MODEL_MAPPING,
AdamW,
AutoConfig,
AutoModelForMaskedLM,
AutoTokenizer,
BatchEncoding,
BertConfig,
BertForMaskedLM,
BertModel,
DataCollatorForLanguageModeling,
SchedulerType,
get_scheduler,
set_seed,
)
HIDDEN_SIZE = 96
MAX_LENGTH = 102
from bottom_transformer import BottomTransformer
from middle_data_collator import MiddleDataCollatorForFunctionCloneDetection
from middle_transformer import MiddleTransformer
from process_data.utils import CURRENT_DATA_BASE_FOR_MIDDLE
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
def parse_args():
parser = argparse.ArgumentParser(
description="Train the bottom Transformer in I-MAD"
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=16,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=64,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--weight_decay", type=float, default=0.0, help="Weight decay to use."
)
parser.add_argument(
"--num_train_epochs",
type=int,
default=40,
help="Total number of training epochs to perform.",
)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear",
help="The scheduler type to use.",
choices=[
"linear",
"cosine",
"cosine_with_restarts",
"polynomial",
"constant",
"constant_with_warmup",
],
)
parser.add_argument(
"--num_warmup_steps",
type=int,
default=0,
help="Number of steps for the warmup in the lr scheduler.",
)
parser.add_argument(
"--output_dir", type=str, default=None, help="Where to store the final model."
)
parser.add_argument(
"--seed", type=int, default=None, help="A seed for reproducible training."
)
parser.add_argument(
"--preprocessing_num_workers",
type=int,
default=None,
help="The number of processes to use for the preprocessing.",
)
parser.add_argument(
"--mlm_probability",
type=float,
default=0.15,
help="Ratio of tokens to mask for masked language modeling loss",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--eval_every_steps",
type=int,
default=5000,
help="Number of steps before evaluating the model.",
)
args = parser.parse_args()
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
return args
def main():
args = parse_args()
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
accelerator = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(
logging.INFO if accelerator.is_local_main_process else logging.ERROR
)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# we take control of the load of dataset by oursevles
# there will be several json file for training
# `raw_dataset` has two features:
# `text`: "sentA\tsentB"
# `is_next`: 0 or 1
# raw_datasets = load_dataset(
# "json",
# data_files={
# "train": "/home/ming/malware/inst2vec_bert/data/test_lm/inst.json",
# "validation": "/home/ming/malware/inst2vec_bert/data/test_lm/inst.json",
# },
# field="data",
# )
# the format in train_files should be
# {"data" =
# [
# {"is_cloned": 0 / 1, "func1": [block1_of_func1, block2_of_func1, ..., blockn_of_func1], "func2":[block1_of_func2, block2_of_func2, ..., blockn_of_func2]},
# {"is_cloned": 0 / 1, "func1": [block1_of_func1, block2_of_func1, ..., blockn_of_func1], "func2":[block1_of_func2, block2_of_func2, ..., blockn_of_func2]},
# ...
# {"is_cloned": 0 / 1, "func1": [block1_of_func1, block2_of_func1, ..., blockn_of_func1], "func2":[block1_of_func2, block2_of_func2, ..., blockn_of_func2]},
# ]
# }
# each block consists of a number of instruction, which is like [opcode, operand_1, operand_2]
train_files = [
os.path.join(CURRENT_DATA_BASE_FOR_MIDDLE, "func.{}.json".format(i))
for i in range(103)
]
valid_file = os.path.join(CURRENT_DATA_BASE_FOR_MIDDLE, "func.103.json")
test_file = os.path.join(CURRENT_DATA_BASE_FOR_MIDDLE, "func.104.json")
raw_datasets = load_dataset(
"json",
data_files={"train": train_files, "validation": valid_file, "test": test_file},
field="data",
)
# train_files = "/home/ming/malware/inst2vec_bert/H-Transformer/data/test.data.json"
# raw_datasets = load_dataset(
# "json", data_files={"train": train_files}, field="data",
# )
# we use the tokenizer previously trained on the dataset above
tokenizer = tokenizers.Tokenizer.from_file(
"/home/ming/malware/inst2vec_bert/data/asm_bert/tokenizer-inst.all.json"
)
# NOTE: have to promise the `length` here is consistent with the one used in `train_my_tokenizer.py`
tokenizer.enable_padding(
pad_id=tokenizer.token_to_id("[PAD]"), pad_token="[PAD]", length=3
)
tokenizer.post_processor = TemplateProcessing(single="$A",)
# # NOTE: `max_position_embeddings` here should be consistent with `length` above
# # use transformer, so the num_hidden_layers = 1
# config = BertConfig(
# vocab_size=tokenizer.get_vocab_size(),
# hidden_size=HIDDEN_SIZE,
# num_hidden_layers=1,
# num_attention_heads=8,
# intermediate_size=HIDDEN_SIZE * 4,
# max_position_embeddings=32,
# )
# bottom_embedding = BottomEmbedding(opcode_size, operand_size, HIDDEN_SIZE // 3)
# bottom_embedding = DataParallel(bottom_embedding)
# # initalize a new BERT for Masked Assemble Model
# model = BertModel(config)
# model = DataParallel(model)
# bottom_headlayer = BottomHeadLayer(opcode_size, operand_size, HIDDEN_SIZE // 3)
# bottom_headlayer = DataParallel(bottom_headlayer)
bottom_transformer = BottomTransformer(
tokenizer.get_vocab_size(),
tokenizer.get_vocab_size(),
tokenizer.token_to_id("[PAD]"),
d_model=HIDDEN_SIZE,
n_head=8,
num_layers=6,
max_length=251,
device="cuda:0",
)
bottom_transformer.load_state_dict(torch.load("./bottom_transformer_state_dict"))
print("The Bottom Transformer model has been loaded successfully !")
bottom_transformer.eval()
model = MiddleTransformer(
bottom_transformer,
d_model=HIDDEN_SIZE,
n_head=8,
num_layers=6,
max_length=MAX_LENGTH,
device="cuda:0",
)
model = DataParallel(model)
loss_function = torch.nn.MSELoss()
# Preprocessing the datasets.
column_names = raw_datasets["train"].column_names
text_column_name = "text" if "text" in column_names else column_names[0]
# First we aplly `tokenize_function` on the dataset.
def tokenize_function(examples):
# pdb.set_trace()
func1s = examples["func1"]
func2s = examples["func2"]
labels = examples["is_cloned"]
encoded_inputs = {}
results1 = [
[tokenizer.encode_batch(block) for block in func] for func in func1s
]
results2 = [
[tokenizer.encode_batch(block) for block in func] for func in func2s
]
# NOTE
# Assumption: every instruction consists of (opcode, operand_1, operand_2)
# so only need first three ids
encoded_inputs["func1_input_ids"] = [
[[inst.ids[:3] for inst in block] for block in func] for func in results1
]
encoded_inputs["func1_mask_for_bottom"] = [
[[inst.special_tokens_mask[0] for inst in block] for block in func]
for func in results1
]
encoded_inputs["func2_input_ids"] = [
[[inst.ids[:3] for inst in block] for block in func] for func in results2
]
encoded_inputs["func2_mask_for_bottom"] = [
[[inst.special_tokens_mask[0] for inst in block] for block in func]
for func in results2
]
# the label should be 1 or -1
encoded_inputs["labels"] = [2 * label - 1 for label in labels]
batch_outputs = BatchEncoding(
encoded_inputs, tensor_type="np", prepend_batch_axis=False,
)
return batch_outputs
tokenized_datasets = raw_datasets.map(
tokenize_function,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=True,
)
train_dataset = tokenized_datasets["train"]
eval_dataset = tokenized_datasets["validation"]
test_dataset = tokenized_datasets["test"]
# Log a few random samples from the training set:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
# Data collator
# This one will take care of randomly masking the tokens.
data_collator = MiddleDataCollatorForFunctionCloneDetection(
tokenizer=tokenizer, mlm=False,
) # , mlm_probability=args.mlm_probability)
# DataLoaders creation:
train_dataloader = DataLoader(
train_dataset,
shuffle=True,
collate_fn=data_collator,
batch_size=args.per_device_train_batch_size,
)
eval_dataloader = DataLoader(
eval_dataset,
collate_fn=data_collator,
batch_size=args.per_device_eval_batch_size,
)
test_dataloader = DataLoader(
test_dataset,
collate_fn=data_collator,
batch_size=args.per_device_eval_batch_size,
)
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [
p
for n, p in model.named_parameters()
if not any(nd in n for nd in no_decay)
],
"weight_decay": args.weight_decay,
},
{
"params": [
p
for n, p in model.named_parameters()
if any(nd in n for nd in no_decay)
],
"weight_decay": 0.0,
},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Prepare everything with our `accelerator`.
(
model,
optimizer,
loss_function,
train_dataloader,
eval_dataloader,
test_dataloader,
) = accelerator.prepare(
model,
optimizer,
loss_function,
train_dataloader,
eval_dataloader,
test_dataloader,
)
# model, optimizer, train_dataloader = accelerator.prepare(
# model, optimizer, train_dataloader
# )
# model.to("cuda:0")
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
# shorter in multiprocess)
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / args.gradient_accumulation_steps
)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
else:
args.num_train_epochs = math.ceil(
args.max_train_steps / num_update_steps_per_epoch
)
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,
)
# Train!
total_batch_size = (
args.per_device_train_batch_size
* accelerator.num_processes
* args.gradient_accumulation_steps
)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(
f" Instantaneous batch size per device = {args.per_device_train_batch_size}"
)
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
)
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
logger.info(f" Evalute every {args.eval_every_steps} steps")
# Only show the progress bar once on each machine.
progress_bar = tqdm(
range(args.max_train_steps), disable=not accelerator.is_local_main_process
)
completed_steps = 0
for epoch in range(args.num_train_epochs):
model.train()
for step, batch in enumerate(train_dataloader):
# input_ids `(batch_size, function_max_size, block_max_size, 3)`
func1_input_ids = batch.pop("func1_input_ids", None)
# masks `(batch_size, function_max_size, block_max_size)`
func1_mask_for_bottom = batch.pop("func1_mask_for_bottom", None)
func1_mask_for_function = batch.pop("func1_mask_for_function", None)
# func1_representations `(batch_size, d_model)`
func1_representations = model(
func1_input_ids, func1_mask_for_bottom, func1_mask_for_function
)
func2_input_ids = batch.pop("func2_input_ids", None)
# masks `(batch_size, function_max_size, block_max_size)`
func2_mask_for_bottom = batch.pop("func2_mask_for_bottom", None)
func2_mask_for_function = batch.pop("func2_mask_for_function", None)
# func1_representations `(batch_size, d_model)`
func2_representations = model(
func2_input_ids, func2_mask_for_bottom, func2_mask_for_function
)
similarity = cosine_similarity(
func1_representations, func2_representations,
)
labels = batch.pop("labels", None).float()
# pdb.set_trace()
loss = loss_function(similarity, labels)
loss = loss.sum()
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if (
step % args.gradient_accumulation_steps == 0
or step == len(train_dataloader) - 1
):
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
completed_steps += 1
if completed_steps >= args.max_train_steps:
break
if completed_steps % args.eval_every_steps == 0:
model.eval()
losses = []
correct = 0
total = 0
for step, batch in enumerate(eval_dataloader):
with torch.no_grad():
# input_ids `(batch_size, function_max_size, block_max_size, 3)`
func1_input_ids = batch.pop("func1_input_ids", None)
# masks `(batch_size, function_max_size, block_max_size)`
func1_mask_for_bottom = batch.pop("func1_mask_for_bottom", None)
func1_mask_for_function = batch.pop(
"func1_mask_for_function", None
)
# func1_representations `(batch_size, d_model)`
func1_representations = model(
func1_input_ids,
func1_mask_for_bottom,
func1_mask_for_function,
)
func2_input_ids = batch.pop("func2_input_ids", None)
# masks `(batch_size, function_max_size, block_max_size)`
func2_mask_for_bottom = batch.pop("func2_mask_for_bottom", None)
func2_mask_for_function = batch.pop(
"func2_mask_for_function", None
)
# func1_representations `(batch_size, d_model)`
func2_representations = model(
func2_input_ids,
func2_mask_for_bottom,
func2_mask_for_function,
)
similarity = cosine_similarity(
func1_representations, func2_representations,
)
labels = batch.pop("labels", None)
loss = loss_function(similarity, labels)
masks = similarity.ge(0.0) + 0
predictions = masks + (torch.ones_like(similarity) - masks) * -1
loss = loss.sum()
losses.append(
accelerator.gather(loss.repeat(args.per_device_eval_batch_size))
)
correct += (predictions == labels).sum().item()
total += labels.shape[0]
losses = torch.cat(losses)
# losses = losses[: len(eval_dataset)]
try:
perplexity = math.exp(torch.mean(losses))
except OverflowError:
perplexity = float("inf")
logger.info(
f"steps {completed_steps}: loss: {torch.mean(losses).item()}, accuracy: {correct / total}"
)
model.train()
for step, batch in enumerate(test_dataloader):
model.eval()
losses = []
correct = 0
total = 0
with torch.no_grad():
# input_ids `(batch_size, function_max_size, block_max_size, 3)`
func1_input_ids = batch.pop("func1_input_ids", None)
# masks `(batch_size, function_max_size, block_max_size)`
func1_mask_for_bottom = batch.pop("func1_mask_for_bottom", None)
func1_mask_for_function = batch.pop("func1_mask_for_function", None)
# func1_representations `(batch_size, d_model)`
func1_representations = model(
func1_input_ids, func1_mask_for_bottom, func1_mask_for_function
)
func2_input_ids = batch.pop("func2_input_ids", None)
# masks `(batch_size, function_max_size, block_max_size)`
func2_mask_for_bottom = batch.pop("func2_mask_for_bottom", None)
func2_mask_for_function = batch.pop("func2_mask_for_function", None)
# func1_representations `(batch_size, d_model)`
func2_representations = model(
func2_input_ids, func2_mask_for_bottom, func2_mask_for_function
)
similarity = cosine_similarity(
func1_representations, func2_representations,
)
labels = batch.pop("labels", None)
loss = loss_function(similarity, labels)
masks = similarity.ge(0.0) + 0
predictions = masks + (torch.ones_like(similarity) - masks) * -1
loss = loss.sum()
losses.append(accelerator.gather(loss.repeat(args.per_device_eval_batch_size)))
correct += (predictions == labels).sum().item()
total += labels.shape[0]
losses = torch.cat(losses)
# losses = losses[: len(eval_dataset)]
try:
perplexity = math.exp(torch.mean(losses))
except OverflowError:
perplexity = float("inf")
logger.info(
f"Final result on test dataset: loss: {torch.mean(losses).item()}, accuracy: {correct / total}"
)
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
torch.save(
unwrapped_model.state_dict(),
os.path.join(args.output_dir, "middle_transformer_state_dict"),
)
print(
"The Middle Transformer has been save to {}".format(
os.path.join(args.output_dir, "middle_transformer_state_dict")
)
)
if __name__ == "__main__":
main()