-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLSL.py
258 lines (193 loc) · 10.3 KB
/
LSL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import os
import json
import random
import wandb
import open_clip
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_split
from argparse import ArgumentParser
from PIL import Image
from tqdm import tqdm
from utils import load_clip_model
random.seed(0)
# This script will fine-tune clip with the knowledge
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Device:", device)
# dataloader
class FinetuneDataset(Dataset):
def __init__(self, data, image_dir, preprocess, tokenizer):
self.data = data
self.preprocess = preprocess
self.image_paths = list(set([d[0] for d in data]))
self.texts = list(set([d[1] for d in data]))
print("Preprocessing images ...") # you need a lot of memory for this
self.image_path2image = {image_path: preprocess(Image.open(image_dir + image_path)) for image_path in tqdm(self.image_paths)}
print("Tokenizing texts ...")
self.text2token = {text: tokenizer(text) for text in tqdm(self.texts)}
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
image_path, text, label = self.data[idx]
image = self.image_path2image[image_path]
text = self.text2token[text]
return image, text, label
def get_label_for_concept(args, features, metadata, annotations, concept):
positive = annotations[concept]["positive"]
negative = annotations[concept]["negative"]
positive_images = []
negative_images = []
if args.modality == "xray":
for report_id in positive:
images = metadata[report_id]["images"]
for image, image_type in images:
if image_type in ["AP", "PA"] and image in features:
positive_images.append(image)
for report_id in negative:
images = metadata[report_id]["images"]
for image, image_type in images:
if image_type in ["AP", "PA"] and image in features:
negative_images.append(image)
elif args.modality == "skin":
for report_id in positive:
images = metadata[report_id]["images"]
for image in images:
if image in features:
positive_images.append(image)
for report_id in negative:
images = metadata[report_id]["images"]
for image in images:
if image in features:
negative_images.append(image)
random.seed(0)
random.shuffle(positive_images)
random.shuffle(negative_images)
# equally add positive and negative examples up to max_examples
if len(positive_images) > len(negative_images):
negative_images_selected = negative_images[:min(len(negative_images), args.max_examples//2)]
positive_images_selected = positive_images[:args.max_examples - len(negative_images_selected)]
else:
positive_images_selected = positive_images[:min(len(positive_images), args.max_examples//2)]
negative_images_selected = negative_images[:args.max_examples - len(positive_images_selected)]
val_len = min(int(0.1*min(len(positive_images_selected), len(negative_images_selected))), 50)
if val_len < 10:
print(f"Test length too small for {concept}. Skipping ...")
return False
positive_train, positive_val = train_test_split(positive_images_selected, test_size=val_len, random_state=0)
negative_train, negative_val = train_test_split(negative_images_selected, test_size=val_len, random_state=0)
positive_train = positive_train[:int(args.train_samples*0.5)]
negative_train = negative_train[:args.train_samples - len(positive_train)]
# downsample to keep the training data balanced
random.seed(0)
if len(positive_train) > len(negative_train): positive_train = random.sample(positive_train, len(negative_train))
else: negative_train = random.sample(negative_train, len(positive_train))
data = {"positive": {"train": positive_train, "val": positive_val}, "negative": {"train": negative_train, "val": negative_val}}
print(f"Question: {concept}, Positive: {len(positive_train)}, Negative: {len(negative_train)}")
return data
def get_training_data(args, features, metadata, annotations):
with open(f"./data/bottlenecks/{args.modality}_{args.bottleneck}.txt", "r") as f:
concepts = f.readlines()
concepts = [concept.strip() for concept in concepts]
concept2annotations = {concept: get_label_for_concept(args, features, metadata, annotations, concept) for concept in concepts}
train_examples = []
val_examples = []
label2idx = {"positive": 1, "negative": 0}
for concept, data in concept2annotations.items():
if data:
for label, split in data.items():
for image in split["train"]:
train_examples.append((image, concept, label2idx[label]))
for image in split["val"]:
val_examples.append((image, concept, label2idx[label]))
return train_examples, val_examples
def contrastive_loss(similarities, labels, margin=0.6):
"""Compute the contrastive loss based on cosine similarities."""
loss_similar = labels * (margin - similarities).clamp(min=0)
loss_dissimilar = (1 - labels) * similarities
loss = loss_similar + loss_dissimilar
return loss.mean()
def finetune_clip(args, features, metadata, annotations):
wandb.init(project="finetune_clip",
name=f"{args.clip_model_name}_{args.bottleneck}_{args.batch_size}_{args.epochs}",
config={
"bottleneck": args.bottleneck,
"batch_size": args.batch_size,
"epochs": args.epochs,
"clip_model_name": args.clip_model_name}
)
# get the training data
train_data, val_data = get_training_data(args, features, metadata, annotations)
print("Number of training examples:", len(train_data))
print("Number of validation examples:", len(val_data))
# get the model
clip_model, tokenizer, preprocess = load_clip_model(args.clip_model_name)
clip_model.to(device)
# get the dataloader
train_data = FinetuneDataset(train_data, args.image_dir, preprocess, tokenizer)
val_data = FinetuneDataset(val_data, args.image_dir, preprocess, tokenizer)
train_loader = DataLoader(train_data, batch_size=args.batch_size, shuffle=True)
val_loader = DataLoader(val_data, batch_size=args.batch_size, shuffle=False)
# the label of each example is binary: 0 or 1, models' outputs are cosine similarities
optimizer = optim.Adam(clip_model.parameters(), lr=args.learning_rate, weight_decay=1e-6)
best_val_loss = float("inf")
torch.autograd.set_detect_anomaly(True)
for epoch in range(args.epochs):
clip_model.train()
for i, (images, texts, labels) in enumerate(train_loader):
optimizer.zero_grad()
text_features = clip_model.encode_text(texts.squeeze().to(device))
image_features = clip_model.encode_image(images.to(device))
labels = labels.float().to(device)
# Normalize features to prevent in-place modification issues
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
# Compute the dot product between text and image features
similarity_matrix = image_features @ text_features.t()
logits = torch.diag(similarity_matrix) # Get the diagonal elements of the similarity matrix
loss = contrastive_loss(logits, labels)
loss.backward()
optimizer.step()
# Log training loss at each iteration
wandb.log({"train_loss": loss.item(), "epoch": epoch, "step": epoch * len(train_loader) + i})
clip_model.eval()
val_loss = 0
with torch.no_grad():
for images, texts, labels in val_loader:
text_features = clip_model.encode_text(texts.squeeze().to(device))
text_features /= text_features.norm(dim=-1, keepdim=True)
image_features = clip_model.encode_image(images.to(device))
image_features /= image_features.norm(dim=-1, keepdim=True)
labels = labels.float().to(device)
similarity_matrix = image_features @ text_features.t()
logits = torch.diag(similarity_matrix)
loss = contrastive_loss(logits, labels)
val_loss += loss.item()
# Log validation loss and accuracy at the end of each epoch
wandb.log({"val_loss": val_loss / len(val_loader), "epoch": epoch})
if val_loss < best_val_loss:
best_val_loss = val_loss
torch.save(clip_model.state_dict(), f"./data/model_weights/{clip_model_name}_{bottleneck}.pt")
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--modality", type=str, default="xray")
parser.add_argument("--bottleneck", type=str, default="PubMed")
parser.add_argument("--image_dir", type=str, default="./data/datasets/MIMIC-CXR/images/")
parser.add_argument("--clip_model_name", type=str, default="whyxrayclip")
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--epochs", type=int, default=20)
parser.add_argument("--learning_rate", type=float, default=1e-6)
parser.add_argument("--max_examples", type=int, default=10000)
parser.add_argument("--train_samples", type=int, default=2000)
args = parser.parse_args()
print("Loading features/metadata/annotations ...")
if args.modality == "xray":
features = torch.load(f'./data/datasets/MIMIC-CXR/MIMIC-CXR_whyxrayclip.pt')
metadata = json.load(open('./data/datasets/MIMIC-CXR/MIMIC-CXR_metadata.json', 'r'))
annotations = json.load(open('./data/datasets/MIMIC-CXR/MIMIC-CXR_concept_annotations.json', 'r'))
elif args.modality == "skin":
features = torch.load(f'./data/datasets/ISIC/ISIC_whylesionclip.pt')
metadata = json.load(open('./data/datasets/ISIC/ISIC_metadata.json', 'r'))
annotations = json.load(open('./data/datasets/ISIC/ISIC_concept_annotations.json', 'r'))
finetune_clip(args, features, metadata, annotations)