-
Notifications
You must be signed in to change notification settings - Fork 3
/
opts.py
executable file
·181 lines (163 loc) · 11.1 KB
/
opts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import argparse
def parse_opt():
parser = argparse.ArgumentParser()
# Data input settings
parser.add_argument('--input_json', type=str, default='data/cocotalk.json',
help='path to the json file containing additional info and vocab')
parser.add_argument('--input_fc_dir', type=str, default='data/mscoco_adaptive/cocobu_fc',
help='path to the directory containing the preprocessed fc feats')
parser.add_argument('--input_att_dir', type=str, default='data/mscoco_adaptive/cocobu_att',
help='path to the directory containing the preprocessed att feats')
parser.add_argument('--input_box_dir', type=str, default='data/mscoco_adaptive/cocobu_box',
help='path to the directory containing the boxes of att feats')
parser.add_argument('--input_label_h5', type=str, default='data/cocotalk_bw_label.h5',
help='path to the h5file containing the preprocessed dataset')
parser.add_argument('--start_from', type=str, default=None,
help="""continue training from saved model at this path. Path must contain files saved by previous training process:
'infos.pkl' : configuration;
'checkpoint' : paths to model file(s) (created by tf).
Note: this file contains absolute paths, be careful when moving files around;
'model.ckpt-*' : file(s) with model definition (created by tf)
""")
parser.add_argument('--cached_tokens', type=str, default='coco-train-idxs',
help='Cached token file for calculating cider score during self critical training.')
# Model settings
parser.add_argument('--caption_model', type=str, default="cbt",
help='show_tell, show_attend_tell, all_img, fc, att2in, att2in2, att2all2, adaatt, adaattmo, topdown, stackatt, denseatt, transformer, cbt')
parser.add_argument('--rnn_size', type=int, default=512,
help='size of the rnn in number of hidden nodes in each layer')
parser.add_argument('--num_layers', type=int, default=1,
help='number of layers in the RNN')
parser.add_argument('--rnn_type', type=str, default='lstm',
help='rnn, gru, or lstm')
parser.add_argument('--input_encoding_size', type=int, default=512,
help='the encoding size of each token in the vocabulary, and the image.')
parser.add_argument('--att_hid_size', type=int, default=512,
help='the hidden size of the attention MLP; only useful in show_attend_tell; 0 if not using hidden layer')
parser.add_argument('--fc_feat_size', type=int, default=2048,
help='2048 for resnet, 4096 for vgg')
parser.add_argument('--att_feat_size', type=int, default=2048,
help='2048 for resnet, 512 for vgg')
parser.add_argument('--logit_layers', type=int, default=1,
help='number of layers in the RNN')
parser.add_argument('--use_bn', type=int, default=0,
help='If 1, then do batch_normalization first in att_embed, if 2 then do bn both in the beginning and the end of att_embed')
# feature manipulation
parser.add_argument('--norm_att_feat', type=int, default=0,
help='If normalize attention features')
parser.add_argument('--use_box', type=int, default=0,
help='If use box features')
parser.add_argument('--norm_box_feat', type=int, default=0,
help='If use box, do we normalize box feature')
# Optimization: General
parser.add_argument('--max_epochs', type=int, default=-1,
help='number of epochs')
parser.add_argument('--batch_size', type=int, default=16,
help='minibatch size')
parser.add_argument('--grad_clip', type=float, default=0.1, #5.,
help='clip gradients at this value')
parser.add_argument('--drop_prob_lm', type=float, default=0.5,
help='strength of dropout in the Language Model RNN')
parser.add_argument('--self_critical_after', type=int, default=-1,
help='After what epoch do we start finetuning the CNN? (-1 = disable; never finetune, 0 = finetune from start)')
parser.add_argument('--seq_per_img', type=int, default=5,
help='number of captions to sample for each image during training. Done for efficiency since CNN forward pass is expensive. E.g. coco has 5 sents/image')
# Sample related
parser.add_argument('--beam_size', type=int, default=1,
help='used when sample_max = 1, indicates number of beams in beam search. Usually 2 or 3 works well. More is not better. Set this to 1 for faster runtime but a bit worse performance.')
parser.add_argument('--max_length', type=int, default=20,
help='Maximum length during sampling')
parser.add_argument('--length_penalty', type=str, default='',
help='wu_X or avg_X, X is the alpha')
parser.add_argument('--block_trigrams', type=int, default=0,
help='block repeated trigram.')
parser.add_argument('--remove_bad_endings', type=int, default=0,
help='Remove bad endings')
#Optimization: for the Language Model
parser.add_argument('--optim', type=str, default='adam',
help='what update to use? rmsprop|sgd|sgdmom|adagrad|adam')
parser.add_argument('--learning_rate', type=float, default=4e-4,
help='learning rate')
parser.add_argument('--learning_rate_decay_start', type=int, default=-1,
help='at what iteration to start decaying learning rate? (-1 = dont) (in epoch)')
parser.add_argument('--learning_rate_decay_every', type=int, default=3,
help='every how many iterations thereafter to drop LR?(in epoch)')
parser.add_argument('--learning_rate_decay_rate', type=float, default=0.8,
help='every how many iterations thereafter to drop LR?(in epoch)')
parser.add_argument('--optim_alpha', type=float, default=0.9,
help='alpha for adam')
parser.add_argument('--optim_beta', type=float, default=0.999,
help='beta used for adam')
parser.add_argument('--optim_epsilon', type=float, default=1e-8,
help='epsilon that goes into denominator for smoothing')
parser.add_argument('--weight_decay', type=float, default=0,
help='weight_decay')
# Transformer
parser.add_argument('--label_smoothing', type=float, default=0,
help='')
parser.add_argument('--noamopt', action='store_true',
help='')
parser.add_argument('--noamopt_warmup', type=int, default=2000,
help='')
parser.add_argument('--noamopt_factor', type=float, default=1,
help='')
parser.add_argument('--reduce_on_plateau', action='store_true',
help='')
parser.add_argument('--scheduled_sampling_start', type=int, default=-1,
help='at what iteration to start decay gt probability')
parser.add_argument('--scheduled_sampling_increase_every', type=int, default=5,
help='every how many iterations thereafter to gt probability')
parser.add_argument('--scheduled_sampling_increase_prob', type=float, default=0.05,
help='How much to update the prob')
parser.add_argument('--scheduled_sampling_max_prob', type=float, default=0.25,
help='Maximum scheduled sampling prob.')
# Evaluation/Checkpointing
parser.add_argument('--val_images_use', type=int, default=3200,
help='how many images to use when periodically evaluating the validation loss? (-1 = all)')
parser.add_argument('--save_checkpoint_every', type=int, default=2500,
help='how often to save a model checkpoint (in iterations)?')
parser.add_argument('--save_history_ckpt', type=int, default=0,
help='If save checkpoints at every save point')
parser.add_argument('--checkpoint_path', type=str, default='save',
help='directory to store checkpointed models')
parser.add_argument('--language_eval', type=int, default=0,
help='Evaluate language as well (1 = yes, 0 = no)? BLEU/CIDEr/METEOR/ROUGE_L? requires coco-caption code from Github.')
parser.add_argument('--losses_log_every', type=int, default=25,
help='How often do we snapshot losses, for inclusion in the progress dump? (0 = disable)')
parser.add_argument('--load_best_score', type=int, default=1,
help='Do we load previous best score when resuming training.')
# misc
parser.add_argument('--id', type=str, default='',
help='an id identifying this run/job. used in cross-val and appended when writing progress files')
parser.add_argument('--train_only', type=int, default=0,
help='if true then use 80k, else use 110k')
# Reward
parser.add_argument('--cider_reward_weight', type=float, default=1,
help='The reward weight from cider')
parser.add_argument('--bleu_reward_weight', type=float, default=0,
help='The reward weight from bleu4')
# Add by this project
parser.add_argument('--nsc', type=bool, default= True,
help='Whether using the new self critical.')
parser.add_argument('--cbt', type=bool, default= True,
help='Whether using compact bidirectional transformer.')
parser.add_argument('--r2l', type=bool, default= False,
help='Whether generating from right to left.')
parser.add_argument('--only_l2r_self_critical', type=bool, default= False,
help='.')
args = parser.parse_args()
# Check if args are valid
assert ((args.caption_model == 'cbt' and args.cbt == True) or (args.caption_model != 'cbt' and args.cbt == False)), "caption_model should be consistent with cbt"
assert args.rnn_size > 0, "rnn_size should be greater than 0"
assert args.num_layers > 0, "num_layers should be greater than 0"
assert args.input_encoding_size > 0, "input_encoding_size should be greater than 0"
assert args.batch_size > 0, "batch_size should be greater than 0"
assert args.drop_prob_lm >= 0 and args.drop_prob_lm < 1, "drop_prob_lm should be between 0 and 1"
assert args.seq_per_img > 0, "seq_per_img should be greater than 0"
assert args.beam_size > 0, "beam_size should be greater than 0"
assert args.save_checkpoint_every > 0, "save_checkpoint_every should be greater than 0"
assert args.losses_log_every > 0, "losses_log_every should be greater than 0"
assert args.language_eval == 0 or args.language_eval == 1, "language_eval should be 0 or 1"
assert args.load_best_score == 0 or args.load_best_score == 1, "language_eval should be 0 or 1"
assert args.train_only == 0 or args.train_only == 1, "language_eval should be 0 or 1"
return args