-
Notifications
You must be signed in to change notification settings - Fork 2
/
output1.txt
719 lines (698 loc) · 53.6 KB
/
output1.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
Using TensorFlow backend.
WARNING:tensorflow:From /home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
WARNING:tensorflow:From /home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/mask_rcnn-2.1-py3.6.egg/mrcnn/model.py:772: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
start
import ready
Configurations:
BACKBONE resnet101
BACKBONE_STRIDES [4, 8, 16, 32, 64]
BATCH_SIZE 1
BBOX_STD_DEV [0.1 0.1 0.2 0.2]
COMPUTE_BACKBONE_SHAPE None
DETECTION_MAX_INSTANCES 100
DETECTION_MIN_CONFIDENCE 0.7
DETECTION_NMS_THRESHOLD 0.3
FPN_CLASSIF_FC_LAYERS_SIZE 1024
GPU_COUNT 1
GRADIENT_CLIP_NORM 5.0
IMAGES_PER_GPU 1
IMAGE_CHANNEL_COUNT 3
IMAGE_MAX_DIM 1024
IMAGE_META_SIZE 93
IMAGE_MIN_DIM 800
IMAGE_MIN_SCALE 0
IMAGE_RESIZE_MODE square
IMAGE_SHAPE [1024 1024 3]
LEARNING_MOMENTUM 0.9
LEARNING_RATE 0.001
LOSS_WEIGHTS {'rpn_class_loss': 1.0, 'rpn_bbox_loss': 1.0, 'mrcnn_class_loss': 1.0, 'mrcnn_bbox_loss': 1.0, 'mrcnn_mask_loss': 1.0}
MASK_POOL_SIZE 14
MASK_SHAPE [28, 28]
MAX_GT_INSTANCES 100
MEAN_PIXEL [123.7 116.8 103.9]
MINI_MASK_SHAPE (56, 56)
NAME coco
NUM_CLASSES 81
POOL_SIZE 7
POST_NMS_ROIS_INFERENCE 1000
POST_NMS_ROIS_TRAINING 2000
PRE_NMS_LIMIT 6000
ROI_POSITIVE_RATIO 0.33
RPN_ANCHOR_RATIOS [0.5, 1, 2]
RPN_ANCHOR_SCALES (32, 64, 128, 256, 512)
RPN_ANCHOR_STRIDE 1
RPN_BBOX_STD_DEV [0.1 0.1 0.2 0.2]
RPN_NMS_THRESHOLD 0.7
RPN_TRAIN_ANCHORS_PER_IMAGE 256
STEPS_PER_EPOCH 1000
TOP_DOWN_PYRAMID_SIZE 256
TRAIN_BN False
TRAIN_ROIS_PER_IMAGE 200
USE_MINI_MASK True
USE_RPN_ROIS True
VALIDATION_STEPS 50
WEIGHT_DECAY 0.0001
loading weights...
making cycleGan-pix2pix/datasets/horse2zebra/masked_testA from cycleGan-pix2pix/datasets/horse2zebra/testA
[ ] 0%[= ] 1%[== ] 3%[=== ] 5%[==== ] 6%[====== ] 8%[======= ] 10%[======== ] 11%[========= ] 13%[========== ] 15%[============ ] 16%[============= ] 18%[============== ] 20%[=============== ] 21%[================ ] 23%[================== ] 25%[=================== ] 26%[==================== ] 28%[===================== ] 30%[====================== ] 31%[======================== ] 33%[========================= ] 35%[========================== ] 36%[=========================== ] 38%[============================ ] 40%[============================== ] 41%[=============================== ] 43%[================================ ] 45%[================================= ] 46%[================================== ] 48%[==================================== ] 50%[===================================== ] 51%[====================================== ] 53%[======================================= ] 55%[======================================== ] 56%[========================================== ] 58%[=========================================== ] 60%[============================================ ] 61%[============================================= ] 63%[============================================== ] 65%[================================================ ] 66%[================================================= ] 68%[================================================== ] 70%[=================================================== ] 71%[==================================================== ] 73%[====================================================== ] 75%[======================================================= ] 76%[======================================================== ] 78%[========================================================= ] 80%[========================================================== ] 81%[============================================================ ] 83%[============================================================= ] 85%[============================================================== ] 86%[=============================================================== ] 88%[================================================================ ] 90%[================================================================== ] 91%[=================================================================== ] 93%[==================================================================== ] 95%[===================================================================== ] 96%[====================================================================== ] 98%[========================================================================] 100%[========================================================================] 100%Warning: no zebras or horses detected in n02381460_1260.jpg
Warning: no zebras or horses detected in n02381460_4740.jpg
Warning: no zebras or horses detected in n02381460_4450.jpg
Warning: no zebras or horses detected in n02381460_3120.jpg
Warning: no zebras or horses detected in n02381460_1100.jpg
Warning: no zebras or horses detected in n02381460_3010.jpg
Warning: no zebras or horses detected in n02381460_1090.jpg
Warning: no zebras or horses detected in n02381460_6790.jpg
Warning: no zebras or horses detected in n02381460_7400.jpg
Warning: no zebras or horses detected in n02381460_2890.jpg
Warning: no zebras or horses detected in n02381460_440.jpg
Warning: no zebras or horses detected in n02381460_4800.jpg
Warning: no zebras or horses detected in n02381460_4660.jpg
Warning: no zebras or horses detected in n02381460_7890.jpg
Warning: no zebras or horses detected in n02381460_7620.jpg
making cycleGan-pix2pix/datasets/horse2zebra/masked_testB from cycleGan-pix2pix/datasets/horse2zebra/testB
[ ] 0%[= ] 1%[== ] 2%[=== ] 4%[==== ] 5%[===== ] 7%[====== ] 8%[======= ] 10%[======== ] 11%[========= ] 12%[========== ] 14%[=========== ] 15%[============ ] 17%[============= ] 18%[============== ] 20%[=============== ] 21%[================ ] 22%[================= ] 24%[================== ] 25%[=================== ] 27%[==================== ] 28%[===================== ] 30%[====================== ] 31%[======================= ] 32%[======================== ] 34%[========================= ] 35%[========================== ] 37%[=========================== ] 38%[============================ ] 40%[============================= ] 41%[============================== ] 42%[=============================== ] 44%[================================ ] 45%[================================= ] 47%[================================== ] 48%[==================================== ] 50%[===================================== ] 51%[====================================== ] 52%[======================================= ] 54%[======================================== ] 55%[========================================= ] 57%[========================================== ] 58%[=========================================== ] 60%[============================================ ] 61%[============================================= ] 62%[============================================== ] 64%[=============================================== ] 65%[================================================ ] 67%[================================================= ] 68%[================================================== ] 70%[=================================================== ] 71%[==================================================== ] 72%[===================================================== ] 74%[====================================================== ] 75%[======================================================= ] 77%[======================================================== ] 78%[========================================================= ] 80%[========================================================== ] 81%[=========================================================== ] 82%[============================================================ ] 84%[============================================================= ] 85%[============================================================== ] 87%[=============================================================== ] 88%[================================================================ ] 90%[================================================================= ] 91%[================================================================== ] 92%[=================================================================== ] 94%[==================================================================== ] 95%[===================================================================== ] 97%[====================================================================== ] 98%[========================================================================] 100%[========================================================================] 100%Warning: no zebras or horses detected in n02391049_5030.jpg
Warning: no zebras or horses detected in n02391049_9350.jpg
Warning: no zebras or horses detected in n02391049_170.jpg
making cycleGan-pix2pix/datasets/horse2zebra/masked_trainA from cycleGan-pix2pix/datasets/horse2zebra/trainA
[ ] 0%[ ] 1%[= ] 2%[== ] 3%[== ] 4%[=== ] 5%[==== ] 6%[===== ] 7%[===== ] 8%[====== ] 9%[======= ] 10%[======== ] 11%[======== ] 12%[========= ] 13%[========== ] 14%[=========== ] 15%[=========== ] 16%[============ ] 17%[============= ] 18%[============== ] 19%[============== ] 20%[=============== ] 21%[================ ] 22%[================= ] 23%[================= ] 24%[================== ] 25%[=================== ] 26%[==================== ] 27%[==================== ] 28%[===================== ] 29%[====================== ] 30%[======================= ] 31%[======================= ] 32%[======================== ] 34%[========================= ] 35%[========================= ] 36%[========================== ] 37%[=========================== ] 38%[============================ ] 39%[============================ ] 40%[============================= ] 41%[============================== ] 42%[=============================== ] 43%[=============================== ] 44%[================================ ] 45%[================================= ] 46%[================================== ] 47%[================================== ] 48%[=================================== ] 49%[==================================== ] 50%[===================================== ] 51%[===================================== ] 52%[====================================== ] 53%[======================================= ] 54%[======================================== ] 55%[======================================== ] 56%[========================================= ] 57%[========================================== ] 58%[=========================================== ] 59%[=========================================== ] 60%[============================================ ] 61%[============================================= ] 62%[============================================== ] 63%[============================================== ] 64%[=============================================== ] 65%[================================================ ] 67%[================================================ ] 68%[================================================= ] 69%[================================================== ] 70%[=================================================== ] 71%[=================================================== ] 72%[==================================================== ] 73%[===================================================== ] 74%[====================================================== ] 75%[====================================================== ] 76%[======================================================= ] 77%[======================================================== ] 78%[========================================================= ] 79%[========================================================= ] 80%[========================================================== ] 81%[=========================================================== ] 82%[============================================================ ] 83%[============================================================ ] 84%[============================================================= ] 85%[============================================================== ] 86%[=============================================================== ] 87%[=============================================================== ] 88%[================================================================ ] 89%[================================================================= ] 90%[================================================================== ] 91%[================================================================== ] 92%[=================================================================== ] 93%[==================================================================== ] 94%[===================================================================== ] 95%[===================================================================== ] 96%[====================================================================== ] 97%[======================================================================= ] 98%[========================================================================] 100%[========================================================================] 100%Warning: no zebras or horses detected in n02381460_5408.jpg
Warning: no zebras or horses detected in n02381460_5286.jpg
Warning: no zebras or horses detected in n02381460_1562.jpg
Warning: no zebras or horses detected in n02381460_912.jpg
Warning: no zebras or horses detected in n02381460_6876.jpg
Warning: no zebras or horses detected in n02381460_1108.jpg
Warning: no zebras or horses detected in n02381460_274.jpg
Warning: no zebras or horses detected in n02381460_7165.jpg
Warning: no zebras or horses detected in n02381460_1743.jpg
Warning: no zebras or horses detected in n02381460_5761.jpg
Warning: no zebras or horses detected in n02381460_3732.jpg
Warning: no zebras or horses detected in n02381460_1155.jpg
Warning: no zebras or horses detected in n02381460_1865.jpg
Warning: no zebras or horses detected in n02381460_3412.jpg
Warning: no zebras or horses detected in n02381460_1144.jpg
Warning: no zebras or horses detected in n02381460_2089.jpg
Warning: no zebras or horses detected in n02381460_3085.jpg
Warning: no zebras or horses detected in n02381460_1388.jpg
Warning: no zebras or horses detected in n02381460_519.jpg
Warning: no zebras or horses detected in n02381460_3566.jpg
Warning: no zebras or horses detected in n02381460_2414.jpg
Warning: no zebras or horses detected in n02381460_567.jpg
Warning: no zebras or horses detected in n02381460_1098.jpg
Warning: no zebras or horses detected in n02381460_1262.jpg
Warning: no zebras or horses detected in n02381460_5374.jpg
Warning: no zebras or horses detected in n02381460_8862.jpg
Warning: no zebras or horses detected in n02381460_4695.jpg
Warning: no zebras or horses detected in n02381460_1909.jpg
Warning: no zebras or horses detected in n02381460_1361.jpg
Warning: no zebras or horses detected in n02381460_2465.jpg
Warning: no zebras or horses detected in n02381460_1635.jpg
Warning: no zebras or horses detected in n02381460_6152.jpg
Warning: no zebras or horses detected in n02381460_1916.jpg
Warning: no zebras or horses detected in n02381460_3075.jpg
Warning: no zebras or horses detected in n02381460_6822.jpg
Warning: no zebras or horses detected in n02381460_2564.jpg
Warning: no zebras or horses detected in n02381460_4665.jpg
Warning: no zebras or horses detected in n02381460_7548.jpg
Warning: no zebras or horses detected in n02381460_6373.jpg
Warning: no zebras or horses detected in n02381460_2198.jpg
Warning: no zebras or horses detected in n02381460_5601.jpg
Warning: no zebras or horses detected in n02381460_8527.jpg
Warning: no zebras or horses detected in n02381460_1973.jpg
Warning: no zebras or horses detected in n02381460_1297.jpg
Warning: no zebras or horses detected in n02381460_1637.jpg
Warning: no zebras or horses detected in n02381460_2433.jpg
Warning: no zebras or horses detected in n02381460_73.jpg
Warning: no zebras or horses detected in n02381460_7806.jpg
Warning: no zebras or horses detected in n02381460_834.jpg
Warning: no zebras or horses detected in n02381460_4748.jpg
Warning: no zebras or horses detected in n02381460_2325.jpg
Warning: no zebras or horses detected in n02381460_1874.jpg
Warning: no zebras or horses detected in n02381460_4307.jpg
Warning: no zebras or horses detected in n02381460_3902.jpg
Warning: no zebras or horses detected in n02381460_7571.jpg
Warning: no zebras or horses detected in n02381460_2612.jpg
Warning: no zebras or horses detected in n02381460_2327.jpg
Warning: no zebras or horses detected in n02381460_1519.jpg
Warning: no zebras or horses detected in n02381460_757.jpg
Warning: no zebras or horses detected in n02381460_2269.jpg
Warning: no zebras or horses detected in n02381460_381.jpg
Warning: no zebras or horses detected in n02381460_1793.jpg
Warning: no zebras or horses detected in n02381460_4467.jpg
Warning: no zebras or horses detected in n02381460_718.jpg
Warning: no zebras or horses detected in n02381460_1578.jpg
Warning: no zebras or horses detected in n02381460_4597.jpg
Warning: no zebras or horses detected in n02381460_4474.jpg
Warning: no zebras or horses detected in n02381460_6403.jpg
Warning: no zebras or horses detected in n02381460_1084.jpg
Warning: no zebras or horses detected in n02381460_4497.jpg
Warning: no zebras or horses detected in n02381460_674.jpg
Warning: no zebras or horses detected in n02381460_1258.jpg
Warning: no zebras or horses detected in n02381460_108.jpg
Warning: no zebras or horses detected in n02381460_5538.jpg
Warning: no zebras or horses detected in n02381460_1696.jpg
Warning: no zebras or horses detected in n02381460_8765.jpg
Warning: no zebras or horses detected in n02381460_3175.jpg
Warning: no zebras or horses detected in n02381460_1168.jpg
Warning: no zebras or horses detected in n02381460_825.jpg
Warning: no zebras or horses detected in n02381460_4482.jpg
Warning: no zebras or horses detected in n02381460_4151.jpg
making cycleGan-pix2pix/datasets/horse2zebra/masked_trainB from cycleGan-pix2pix/datasets/horse2zebra/trainB
[ ] 0%[ ] 1%[= ] 2%[== ] 3%[=== ] 4%[=== ] 5%Traceback (most recent call last):
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 935, in _normalize_shape
shape_arr = np.broadcast_to(shape_arr, (ndims, 2))
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/stride_tricks.py", line 176, in broadcast_to
return _broadcast_to(array, shape, subok=subok, readonly=True)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/stride_tricks.py", line 128, in _broadcast_to
op_flags=[op_flag], itershape=shape, order='C')
ValueError: operands could not be broadcast together with remapped shapes [original->remapped]: (3,2) and requested shape (2,2)
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "preprocess.py", line 142, in preprocess
res = model.detect([image])[0]
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/mask_rcnn-2.1-py3.6.egg/mrcnn/model.py", line 2503, in detect
molded_images, image_metas, windows = self.mold_inputs(images)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/mask_rcnn-2.1-py3.6.egg/mrcnn/model.py", line 2401, in mold_inputs
mode=self.config.IMAGE_RESIZE_MODE)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/mask_rcnn-2.1-py3.6.egg/mrcnn/utils.py", line 458, in resize_image
image = np.pad(image, padding, mode='constant', constant_values=0)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 1200, in pad
pad_width = _validate_lengths(narray, pad_width)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 979, in _validate_lengths
normshp = _normalize_shape(narray, number_elements)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 938, in _normalize_shape
raise ValueError(fmt % (shape,))
ValueError: Unable to create correctly shaped tuple from [(112, 112), (112, 112), (0, 0)]
[==== ] 6%[===== ] 7%[====== ] 8%Traceback (most recent call last):
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 935, in _normalize_shape
shape_arr = np.broadcast_to(shape_arr, (ndims, 2))
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/stride_tricks.py", line 176, in broadcast_to
return _broadcast_to(array, shape, subok=subok, readonly=True)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/stride_tricks.py", line 128, in _broadcast_to
op_flags=[op_flag], itershape=shape, order='C')
ValueError: operands could not be broadcast together with remapped shapes [original->remapped]: (3,2) and requested shape (2,2)
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "preprocess.py", line 142, in preprocess
res = model.detect([image])[0]
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/mask_rcnn-2.1-py3.6.egg/mrcnn/model.py", line 2503, in detect
molded_images, image_metas, windows = self.mold_inputs(images)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/mask_rcnn-2.1-py3.6.egg/mrcnn/model.py", line 2401, in mold_inputs
mode=self.config.IMAGE_RESIZE_MODE)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/mask_rcnn-2.1-py3.6.egg/mrcnn/utils.py", line 458, in resize_image
image = np.pad(image, padding, mode='constant', constant_values=0)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 1200, in pad
pad_width = _validate_lengths(narray, pad_width)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 979, in _validate_lengths
normshp = _normalize_shape(narray, number_elements)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 938, in _normalize_shape
raise ValueError(fmt % (shape,))
ValueError: Unable to create correctly shaped tuple from [(112, 112), (112, 112), (0, 0)]
[====== ] 9%[======= ] 10%[======== ] 11%[========= ] 12%Traceback (most recent call last):
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 935, in _normalize_shape
shape_arr = np.broadcast_to(shape_arr, (ndims, 2))
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/stride_tricks.py", line 176, in broadcast_to
return _broadcast_to(array, shape, subok=subok, readonly=True)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/stride_tricks.py", line 128, in _broadcast_to
op_flags=[op_flag], itershape=shape, order='C')
ValueError: operands could not be broadcast together with remapped shapes [original->remapped]: (3,2) and requested shape (2,2)
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "preprocess.py", line 142, in preprocess
res = model.detect([image])[0]
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/mask_rcnn-2.1-py3.6.egg/mrcnn/model.py", line 2503, in detect
molded_images, image_metas, windows = self.mold_inputs(images)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/mask_rcnn-2.1-py3.6.egg/mrcnn/model.py", line 2401, in mold_inputs
mode=self.config.IMAGE_RESIZE_MODE)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/mask_rcnn-2.1-py3.6.egg/mrcnn/utils.py", line 458, in resize_image
image = np.pad(image, padding, mode='constant', constant_values=0)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 1200, in pad
pad_width = _validate_lengths(narray, pad_width)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 979, in _validate_lengths
normshp = _normalize_shape(narray, number_elements)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 938, in _normalize_shape
raise ValueError(fmt % (shape,))
ValueError: Unable to create correctly shaped tuple from [(112, 112), (112, 112), (0, 0)]
[========= ] 13%[========== ] 14%[=========== ] 15%[============ ] 16%[============ ] 17%[============= ] 18%[============== ] 19%[=============== ] 20%[=============== ] 22%[================ ] 23%[================= ] 24%[================== ] 25%[================== ] 26%[=================== ] 27%[==================== ] 28%[===================== ] 29%[===================== ] 30%[====================== ] 31%[======================= ] 32%[======================== ] 33%[======================== ] 34%[========================= ] 35%Traceback (most recent call last):
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 935, in _normalize_shape
shape_arr = np.broadcast_to(shape_arr, (ndims, 2))
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/stride_tricks.py", line 176, in broadcast_to
return _broadcast_to(array, shape, subok=subok, readonly=True)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/stride_tricks.py", line 128, in _broadcast_to
op_flags=[op_flag], itershape=shape, order='C')
ValueError: operands could not be broadcast together with remapped shapes [original->remapped]: (3,2) and requested shape (2,2)
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "preprocess.py", line 142, in preprocess
res = model.detect([image])[0]
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/mask_rcnn-2.1-py3.6.egg/mrcnn/model.py", line 2503, in detect
molded_images, image_metas, windows = self.mold_inputs(images)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/mask_rcnn-2.1-py3.6.egg/mrcnn/model.py", line 2401, in mold_inputs
mode=self.config.IMAGE_RESIZE_MODE)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/mask_rcnn-2.1-py3.6.egg/mrcnn/utils.py", line 458, in resize_image
image = np.pad(image, padding, mode='constant', constant_values=0)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 1200, in pad
pad_width = _validate_lengths(narray, pad_width)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 979, in _validate_lengths
normshp = _normalize_shape(narray, number_elements)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 938, in _normalize_shape
raise ValueError(fmt % (shape,))
ValueError: Unable to create correctly shaped tuple from [(112, 112), (112, 112), (0, 0)]
[========================== ] 36%[=========================== ] 37%[=========================== ] 38%[============================ ] 39%[============================= ] 40%[============================== ] 41%[============================== ] 43%[=============================== ] 44%[================================ ] 45%[================================= ] 46%[================================== ] 47%[================================== ] 48%[=================================== ] 49%[==================================== ] 50%[===================================== ] 51%Traceback (most recent call last):
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 935, in _normalize_shape
shape_arr = np.broadcast_to(shape_arr, (ndims, 2))
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/stride_tricks.py", line 176, in broadcast_to
return _broadcast_to(array, shape, subok=subok, readonly=True)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/stride_tricks.py", line 128, in _broadcast_to
op_flags=[op_flag], itershape=shape, order='C')
ValueError: operands could not be broadcast together with remapped shapes [original->remapped]: (3,2) and requested shape (2,2)
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "preprocess.py", line 142, in preprocess
res = model.detect([image])[0]
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/mask_rcnn-2.1-py3.6.egg/mrcnn/model.py", line 2503, in detect
molded_images, image_metas, windows = self.mold_inputs(images)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/mask_rcnn-2.1-py3.6.egg/mrcnn/model.py", line 2401, in mold_inputs
mode=self.config.IMAGE_RESIZE_MODE)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/mask_rcnn-2.1-py3.6.egg/mrcnn/utils.py", line 458, in resize_image
image = np.pad(image, padding, mode='constant', constant_values=0)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 1200, in pad
pad_width = _validate_lengths(narray, pad_width)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 979, in _validate_lengths
normshp = _normalize_shape(narray, number_elements)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 938, in _normalize_shape
raise ValueError(fmt % (shape,))
ValueError: Unable to create correctly shaped tuple from [(112, 112), (112, 112), (0, 0)]
Traceback (most recent call last):
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 935, in _normalize_shape
shape_arr = np.broadcast_to(shape_arr, (ndims, 2))
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/stride_tricks.py", line 176, in broadcast_to
return _broadcast_to(array, shape, subok=subok, readonly=True)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/stride_tricks.py", line 128, in _broadcast_to
op_flags=[op_flag], itershape=shape, order='C')
ValueError: operands could not be broadcast together with remapped shapes [original->remapped]: (3,2) and requested shape (2,2)
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "preprocess.py", line 142, in preprocess
res = model.detect([image])[0]
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/mask_rcnn-2.1-py3.6.egg/mrcnn/model.py", line 2503, in detect
molded_images, image_metas, windows = self.mold_inputs(images)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/mask_rcnn-2.1-py3.6.egg/mrcnn/model.py", line 2401, in mold_inputs
mode=self.config.IMAGE_RESIZE_MODE)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/mask_rcnn-2.1-py3.6.egg/mrcnn/utils.py", line 458, in resize_image
image = np.pad(image, padding, mode='constant', constant_values=0)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 1200, in pad
pad_width = _validate_lengths(narray, pad_width)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 979, in _validate_lengths
normshp = _normalize_shape(narray, number_elements)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 938, in _normalize_shape
raise ValueError(fmt % (shape,))
ValueError: Unable to create correctly shaped tuple from [(112, 112), (112, 112), (0, 0)]
[===================================== ] 52%[====================================== ] 53%[======================================= ] 54%[======================================== ] 55%[======================================== ] 56%[========================================= ] 57%[========================================== ] 58%[=========================================== ] 59%[=========================================== ] 60%[============================================ ] 61%[============================================= ] 62%[============================================== ] 64%[============================================== ] 65%[=============================================== ] 66%[================================================ ] 67%[================================================= ] 68%[================================================= ] 69%[================================================== ] 70%[=================================================== ] 71%[==================================================== ] 72%[==================================================== ] 73%[===================================================== ] 74%[====================================================== ] 75%[======================================================= ] 76%[======================================================= ] 77%[======================================================== ] 78%[========================================================= ] 79%[========================================================== ] 80%[========================================================== ] 81%[=========================================================== ] 82%[============================================================ ] 83%[============================================================= ] 85%[============================================================= ] 86%[============================================================== ] 87%[=============================================================== ] 88%[================================================================ ] 89%[================================================================ ] 90%[================================================================= ] 91%[================================================================== ] 92%[=================================================================== ] 93%[==================================================================== ] 94%[==================================================================== ] 95%[===================================================================== ] 96%[====================================================================== ] 97%[======================================================================= ] 98%Traceback (most recent call last):
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 935, in _normalize_shape
shape_arr = np.broadcast_to(shape_arr, (ndims, 2))
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/stride_tricks.py", line 176, in broadcast_to
return _broadcast_to(array, shape, subok=subok, readonly=True)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/stride_tricks.py", line 128, in _broadcast_to
op_flags=[op_flag], itershape=shape, order='C')
ValueError: operands could not be broadcast together with remapped shapes [original->remapped]: (3,2) and requested shape (2,2)
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "preprocess.py", line 142, in preprocess
res = model.detect([image])[0]
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/mask_rcnn-2.1-py3.6.egg/mrcnn/model.py", line 2503, in detect
molded_images, image_metas, windows = self.mold_inputs(images)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/mask_rcnn-2.1-py3.6.egg/mrcnn/model.py", line 2401, in mold_inputs
mode=self.config.IMAGE_RESIZE_MODE)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/mask_rcnn-2.1-py3.6.egg/mrcnn/utils.py", line 458, in resize_image
image = np.pad(image, padding, mode='constant', constant_values=0)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 1200, in pad
pad_width = _validate_lengths(narray, pad_width)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 979, in _validate_lengths
normshp = _normalize_shape(narray, number_elements)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/numpy/lib/arraypad.py", line 938, in _normalize_shape
raise ValueError(fmt % (shape,))
ValueError: Unable to create correctly shaped tuple from [(112, 112), (112, 112), (0, 0)]
[======================================================================= ] 99%[========================================================================] 100%Warning: no zebras or horses detected in n02391049_8148.jpg
Warning: no zebras or horses detected in n02391049_4218.jpg
Exception when handling image n02391049_9726.jpg!
Exception when handling image n02391049_226.jpg!
Exception when handling image n02391049_2361.jpg!
Warning: no zebras or horses detected in n02391049_10596.jpg
Warning: no zebras or horses detected in n02391049_11063.jpg
Warning: no zebras or horses detected in n02391049_7812.jpg
Warning: no zebras or horses detected in n02391049_11166.jpg
Warning: no zebras or horses detected in n02391049_7.jpg
Exception when handling image n02391049_7503.jpg!
Warning: no zebras or horses detected in n02391049_1131.jpg
Exception when handling image n02391049_2341.jpg!
Exception when handling image n02391049_2757.jpg!
Warning: no zebras or horses detected in n02391049_3436.jpg
Warning: no zebras or horses detected in n02391049_3509.jpg
Warning: no zebras or horses detected in n02391049_10576.jpg
Warning: no zebras or horses detected in n02391049_2606.jpg
Warning: no zebras or horses detected in n02391049_2817.jpg
Warning: no zebras or horses detected in n02391049_5093.jpg
Warning: no zebras or horses detected in n02391049_2856.jpg
Warning: no zebras or horses detected in n02391049_9016.jpg
Warning: no zebras or horses detected in n02391049_4475.jpg
Warning: no zebras or horses detected in n02391049_2999.jpg
Warning: no zebras or horses detected in n02391049_1145.jpg
Warning: no zebras or horses detected in n02391049_5791.jpg
Warning: no zebras or horses detected in n02391049_2183.jpg
Warning: no zebras or horses detected in n02391049_627.jpg
Exception when handling image n02391049_8008.jpg!
Images with warnings:
{'no': {'testA': ['n02381460_1260.jpg', 'n02381460_4740.jpg', 'n02381460_4450.jpg', 'n02381460_3120.jpg', 'n02381460_1100.jpg', 'n02381460_3010.jpg', 'n02381460_1090.jpg', 'n02381460_6790.jpg', 'n02381460_7400.jpg', 'n02381460_2890.jpg', 'n02381460_440.jpg', 'n02381460_4800.jpg', 'n02381460_4660.jpg', 'n02381460_7890.jpg', 'n02381460_7620.jpg'], 'testB': ['n02391049_5030.jpg', 'n02391049_9350.jpg', 'n02391049_170.jpg'], 'trainA': ['n02381460_5408.jpg', 'n02381460_5286.jpg', 'n02381460_1562.jpg', 'n02381460_912.jpg', 'n02381460_6876.jpg', 'n02381460_1108.jpg', 'n02381460_274.jpg', 'n02381460_7165.jpg', 'n02381460_1743.jpg', 'n02381460_5761.jpg', 'n02381460_3732.jpg', 'n02381460_1155.jpg', 'n02381460_1865.jpg', 'n02381460_3412.jpg', 'n02381460_1144.jpg', 'n02381460_2089.jpg', 'n02381460_3085.jpg', 'n02381460_1388.jpg', 'n02381460_519.jpg', 'n02381460_3566.jpg', 'n02381460_2414.jpg', 'n02381460_567.jpg', 'n02381460_1098.jpg', 'n02381460_1262.jpg', 'n02381460_5374.jpg', 'n02381460_8862.jpg', 'n02381460_4695.jpg', 'n02381460_1909.jpg', 'n02381460_1361.jpg', 'n02381460_2465.jpg', 'n02381460_1635.jpg', 'n02381460_6152.jpg', 'n02381460_1916.jpg', 'n02381460_3075.jpg', 'n02381460_6822.jpg', 'n02381460_2564.jpg', 'n02381460_4665.jpg', 'n02381460_7548.jpg', 'n02381460_6373.jpg', 'n02381460_2198.jpg', 'n02381460_5601.jpg', 'n02381460_8527.jpg', 'n02381460_1973.jpg', 'n02381460_1297.jpg', 'n02381460_1637.jpg', 'n02381460_2433.jpg', 'n02381460_73.jpg', 'n02381460_7806.jpg', 'n02381460_834.jpg', 'n02381460_4748.jpg', 'n02381460_2325.jpg', 'n02381460_1874.jpg', 'n02381460_4307.jpg', 'n02381460_3902.jpg', 'n02381460_7571.jpg', 'n02381460_2612.jpg', 'n02381460_2327.jpg', 'n02381460_1519.jpg', 'n02381460_757.jpg', 'n02381460_2269.jpg', 'n02381460_381.jpg', 'n02381460_1793.jpg', 'n02381460_4467.jpg', 'n02381460_718.jpg', 'n02381460_1578.jpg', 'n02381460_4597.jpg', 'n02381460_4474.jpg', 'n02381460_6403.jpg', 'n02381460_1084.jpg', 'n02381460_4497.jpg', 'n02381460_674.jpg', 'n02381460_1258.jpg', 'n02381460_108.jpg', 'n02381460_5538.jpg', 'n02381460_1696.jpg', 'n02381460_8765.jpg', 'n02381460_3175.jpg', 'n02381460_1168.jpg', 'n02381460_825.jpg', 'n02381460_4482.jpg', 'n02381460_4151.jpg'], 'trainB': ['n02391049_8148.jpg', 'n02391049_4218.jpg', 'n02391049_10596.jpg', 'n02391049_11063.jpg', 'n02391049_7812.jpg', 'n02391049_11166.jpg', 'n02391049_7.jpg', 'n02391049_1131.jpg', 'n02391049_3436.jpg', 'n02391049_3509.jpg', 'n02391049_10576.jpg', 'n02391049_2606.jpg', 'n02391049_2817.jpg', 'n02391049_5093.jpg', 'n02391049_2856.jpg', 'n02391049_9016.jpg', 'n02391049_4475.jpg', 'n02391049_2999.jpg', 'n02391049_1145.jpg', 'n02391049_5791.jpg', 'n02391049_2183.jpg', 'n02391049_627.jpg']}}