-
Notifications
You must be signed in to change notification settings - Fork 36
/
main_tokencut.py
executable file
·326 lines (277 loc) · 12.7 KB
/
main_tokencut.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
"""
Main experiment file. Code adapted from LOST: https://github.com/valeoai/LOST
"""
import os
import argparse
import random
import pickle
import torch
import datetime
import torch.nn as nn
import numpy as np
from tqdm import tqdm
from PIL import Image
from networks import get_model
from datasets import ImageDataset, Dataset, bbox_iou
from visualizations import visualize_img, visualize_eigvec, visualize_predictions, visualize_predictions_gt
from object_discovery import ncut
import matplotlib.pyplot as plt
import time
if __name__ == "__main__":
parser = argparse.ArgumentParser("Visualize Self-Attention maps")
parser.add_argument(
"--arch",
default="vit_small",
type=str,
choices=[
"vit_tiny",
"vit_small",
"vit_base",
"moco_vit_small",
"moco_vit_base",
"mae_vit_base",
],
help="Model architecture.",
)
parser.add_argument(
"--patch_size", default=16, type=int, help="Patch resolution of the model."
)
# Use a dataset
parser.add_argument(
"--dataset",
default="VOC07",
type=str,
choices=[None, "VOC07", "VOC12", "COCO20k"],
help="Dataset name.",
)
parser.add_argument(
"--save-feat-dir",
type=str,
default=None,
help="if save-feat-dir is not None, only computing features and save it into save-feat-dir",
)
parser.add_argument(
"--set",
default="train",
type=str,
choices=["val", "train", "trainval", "test"],
help="Path of the image to load.",
)
# Or use a single image
parser.add_argument(
"--image_path",
type=str,
default=None,
help="If want to apply only on one image, give file path.",
)
# Folder used to output visualizations and
parser.add_argument(
"--output_dir", type=str, default="outputs", help="Output directory to store predictions and visualizations."
)
# Evaluation setup
parser.add_argument("--no_hard", action="store_true", help="Only used in the case of the VOC_all setup (see the paper).")
parser.add_argument("--no_evaluation", action="store_true", help="Compute the evaluation.")
parser.add_argument("--save_predictions", default=True, type=bool, help="Save predicted bouding boxes.")
# Visualization
parser.add_argument(
"--visualize",
type=str,
choices=["attn", "pred", "all", None],
default=None,
help="Select the different type of visualizations.",
)
# TokenCut parameters
parser.add_argument(
"--which_features",
type=str,
default="k",
choices=["k", "q", "v"],
help="Which features to use",
)
parser.add_argument(
"--k_patches",
type=int,
default=100,
help="Number of patches with the lowest degree considered."
)
parser.add_argument("--resize", type=int, default=None, help="Resize input image to fix size")
parser.add_argument("--tau", type=float, default=0.2, help="Tau for seperating the Graph.")
parser.add_argument("--eps", type=float, default=1e-5, help="Eps for defining the Graph.")
parser.add_argument("--no-binary-graph", action="store_true", default=False, help="Generate a binary graph where edge of the Graph will binary. Or using similarity score as edge weight.")
# Use dino-seg proposed method
parser.add_argument("--dinoseg", action="store_true", help="Apply DINO-seg baseline.")
parser.add_argument("--dinoseg_head", type=int, default=4)
args = parser.parse_args()
if args.image_path is not None:
args.save_predictions = False
args.no_evaluation = True
args.dataset = None
# -------------------------------------------------------------------------------------------------------
# Dataset
# If an image_path is given, apply the method only to the image
if args.image_path is not None:
dataset = ImageDataset(args.image_path, args.resize)
else:
dataset = Dataset(args.dataset, args.set, args.no_hard)
# -------------------------------------------------------------------------------------------------------
# Model
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
#device = torch.device('cuda')
model = get_model(args.arch, args.patch_size, device)
# -------------------------------------------------------------------------------------------------------
# Directories
if args.image_path is None:
args.output_dir = os.path.join(args.output_dir, dataset.name)
os.makedirs(args.output_dir, exist_ok=True)
# Naming
if args.dinoseg:
# Experiment with the baseline DINO-seg
if "vit" not in args.arch:
raise ValueError("DINO-seg can only be applied to tranformer networks.")
exp_name = f"{args.arch}-{args.patch_size}_dinoseg-head{args.dinoseg_head}"
else:
# Experiment with TokenCut
exp_name = f"TokenCut-{args.arch}"
if "vit" in args.arch:
exp_name += f"{args.patch_size}_{args.which_features}"
print(f"Running TokenCut on the dataset {dataset.name} (exp: {exp_name})")
# Visualization
if args.visualize:
vis_folder = f"{args.output_dir}/{exp_name}"
os.makedirs(vis_folder, exist_ok=True)
if args.save_feat_dir is not None :
os.mkdir(args.save_feat_dir)
# -------------------------------------------------------------------------------------------------------
# Loop over images
preds_dict = {}
cnt = 0
corloc = np.zeros(len(dataset.dataloader))
start_time = time.time()
pbar = tqdm(dataset.dataloader)
for im_id, inp in enumerate(pbar):
# ------------ IMAGE PROCESSING -------------------------------------------
img = inp[0]
init_image_size = img.shape
# Get the name of the image
im_name = dataset.get_image_name(inp[1])
# Pass in case of no gt boxes in the image
if im_name is None:
continue
# Padding the image with zeros to fit multiple of patch-size
size_im = (
img.shape[0],
int(np.ceil(img.shape[1] / args.patch_size) * args.patch_size),
int(np.ceil(img.shape[2] / args.patch_size) * args.patch_size),
)
paded = torch.zeros(size_im)
paded[:, : img.shape[1], : img.shape[2]] = img
img = paded
# # Move to gpu
if device == torch.device('cuda'):
img = img.cuda(non_blocking=True)
# Size for transformers
w_featmap = img.shape[-2] // args.patch_size
h_featmap = img.shape[-1] // args.patch_size
# ------------ GROUND-TRUTH -------------------------------------------
if not args.no_evaluation:
gt_bbxs, gt_cls = dataset.extract_gt(inp[1], im_name)
if gt_bbxs is not None:
# Discard images with no gt annotations
# Happens only in the case of VOC07 and VOC12
if gt_bbxs.shape[0] == 0 and args.no_hard:
continue
# ------------ EXTRACT FEATURES -------------------------------------------
with torch.no_grad():
# ------------ FORWARD PASS -------------------------------------------
if "vit" in args.arch:
# Store the outputs of qkv layer from the last attention layer
feat_out = {}
def hook_fn_forward_qkv(module, input, output):
feat_out["qkv"] = output
model._modules["blocks"][-1]._modules["attn"]._modules["qkv"].register_forward_hook(hook_fn_forward_qkv)
# Forward pass in the model
attentions = model.get_last_selfattention(img[None, :, :, :])
# Scaling factor
scales = [args.patch_size, args.patch_size]
# Dimensions
nb_im = attentions.shape[0] # Batch size
nh = attentions.shape[1] # Number of heads
nb_tokens = attentions.shape[2] # Number of tokens
# Baseline: compute DINO segmentation technique proposed in the DINO paper
# and select the biggest component
if args.dinoseg:
pred = dino_seg(attentions, (w_featmap, h_featmap), args.patch_size, head=args.dinoseg_head)
pred = np.asarray(pred)
else:
# Extract the qkv features of the last attention layer
qkv = (
feat_out["qkv"]
.reshape(nb_im, nb_tokens, 3, nh, -1 // nh)
.permute(2, 0, 3, 1, 4)
)
q, k, v = qkv[0], qkv[1], qkv[2]
k = k.transpose(1, 2).reshape(nb_im, nb_tokens, -1)
q = q.transpose(1, 2).reshape(nb_im, nb_tokens, -1)
v = v.transpose(1, 2).reshape(nb_im, nb_tokens, -1)
# Modality selection
if args.which_features == "k":
#feats = k[:, 1:, :]
feats = k
elif args.which_features == "q":
#feats = q[:, 1:, :]
feats = q
elif args.which_features == "v":
#feats = v[:, 1:, :]
feats = v
if args.save_feat_dir is not None :
np.save(os.path.join(args.save_feat_dir, im_name.replace('.jpg', '.npy').replace('.jpeg', '.npy').replace('.png', '.npy')), feats.cpu().numpy())
continue
else:
raise ValueError("Unknown model.")
# ------------ Apply TokenCut -------------------------------------------
if not args.dinoseg:
pred, objects, foreground, seed , bins, eigenvector= ncut(feats, [w_featmap, h_featmap], scales, init_image_size, args.tau, args.eps, im_name=im_name, no_binary_graph=args.no_binary_graph)
if args.visualize == "pred" and args.no_evaluation :
image = dataset.load_image(im_name, size_im)
visualize_predictions(image, pred, vis_folder, im_name)
if args.visualize == "attn" and args.no_evaluation:
visualize_eigvec(eigenvector, vis_folder, im_name, [w_featmap, h_featmap], scales)
if args.visualize == "all" and args.no_evaluation:
image = dataset.load_image(im_name, size_im)
visualize_predictions(image, pred, vis_folder, im_name)
visualize_eigvec(eigenvector, vis_folder, im_name, [w_featmap, h_featmap], scales)
# ------------ Visualizations -------------------------------------------
# Save the prediction
preds_dict[im_name] = pred
# Evaluation
if args.no_evaluation:
continue
# Compare prediction to GT boxes
ious = bbox_iou(torch.from_numpy(pred), torch.from_numpy(gt_bbxs))
if torch.any(ious >= 0.5):
corloc[im_id] = 1
vis_folder = f"{args.output_dir}/{exp_name}"
os.makedirs(vis_folder, exist_ok=True)
image = dataset.load_image(im_name)
#visualize_predictions(image, pred, vis_folder, im_name)
#visualize_eigvec(eigenvector, vis_folder, im_name, [w_featmap, h_featmap], scales)
cnt += 1
if cnt % 50 == 0:
pbar.set_description(f"Found {int(np.sum(corloc))}/{cnt}")
end_time = time.time()
print(f'Time cost: {str(datetime.timedelta(milliseconds=int((end_time - start_time)*1000)))}')
# Save predicted bounding boxes
if args.save_predictions:
folder = f"{args.output_dir}/{exp_name}"
os.makedirs(folder, exist_ok=True)
filename = os.path.join(folder, "preds.pkl")
with open(filename, "wb") as f:
pickle.dump(preds_dict, f)
print("Predictions saved at %s" % filename)
# Evaluate
if not args.no_evaluation:
print(f"corloc: {100*np.sum(corloc)/cnt:.2f} ({int(np.sum(corloc))}/{cnt})")
result_file = os.path.join(folder, 'results.txt')
with open(result_file, 'w') as f:
f.write('corloc,%.1f,,\n'%(100*np.sum(corloc)/cnt))
print('File saved at %s'%result_file)