-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest.py
181 lines (162 loc) · 6.61 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import argparse
import time
from os import path as osp
from functools import partial
import mmcv
import torch
import random
import numpy as np
from torch.utils.data import DataLoader, DistributedSampler, RandomSampler, SequentialSampler
from mmcv import Config, DictAction
from mmcv.runner import init_dist, get_dist_info, load_checkpoint, wrap_fp16_model
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel, collate
from datasets import build_dataset
from models import build_refiner, build_estimator
from tools.eval import single_gpu_test, multi_gpu_test
# profile
def parse_args():
parser = argparse.ArgumentParser(
description='Test a pose estimator'
)
parser.add_argument(
'--config', help='test config file path', default=None)
parser.add_argument(
'--checkpoint', nargs='+', type=str, help='checkpoint file', default=[],)
parser.add_argument(
'--mode', choices=['refiner', 'estimator'], default='refiner')
parser.add_argument(
'--out', help='output result file in pickle format')
parser.add_argument(
'--show', choices=['contour', 'project', 'none'], default='none', help='show the results immediately')
parser.add_argument(
'--out-dir', type=str, help='if there is no display interface, you can save the visualized images under this dir')
parser.add_argument(
'--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher')
parser.add_argument(
'--gpu-collect',
action='store_true',
help='whether to use gpu to collect results'
)
parser.add_argument(
'--eval', action='store_true', help='whether to evaluate the results')
parser.add_argument(
'--format-only', action='store_true', help='whether to save the results in BOP format')
parser.add_argument(
'--save-dir', type=str, default='debug/results', help='directory for saving the formatted results')
parser.add_argument(
'--eval-options',
action=DictAction,
nargs='+',
help='custom options for formating results, the key-value pair in xxx=yyy'
)
parser.add_argument(
'--seed', type=int, default=None, help='random seed')
parser.add_argument(
'--basetime', type=float, default=0., help='base time for time recording')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
return args
def build_dataloader(cfg, dataset, distributed, shuffle):
if cfg.data.get('test_samples_per_gpu', None) is not None:
samples_per_gpu = cfg.data.test_samples_per_gpu
else:
samples_per_gpu = cfg.data.samples_per_gpu
if distributed:
rank, world_size = get_dist_info()
sampler = DistributedSampler(dataset, world_size, rank, shuffle=shuffle)
batch_size = samples_per_gpu
num_workers = cfg.data.workers_per_gpu
else:
if shuffle:
sampler = RandomSampler(dataset)
else:
sampler = SequentialSampler(dataset)
batch_size = samples_per_gpu * cfg.num_gpus
num_workers = cfg.data.workers_per_gpu * cfg.num_gpus
dataloader = DataLoader(
dataset,
batch_size=batch_size,
sampler=sampler,
num_workers=num_workers,
collate_fn=partial(collate, samples_per_gpu=samples_per_gpu),
shuffle=False,
)
return dataloader
def set_random_seed(seed, deterministic=False):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if deterministic:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if __name__ == '__main__':
args = parse_args()
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
raise ValueError('The output file must be a pickle file')
cfg = Config.fromfile(args.config)
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.get('dist_param', {}))
rank, _ = get_dist_info()
if cfg.get('work_dir', None) is not None and rank == 0:
mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
json_file = osp.join(cfg.work_dir, f'eval_{timestamp}.json')
# build dataset
dataset = build_dataset(cfg.data.test)
dataloader = build_dataloader(cfg, dataset, distributed, shuffle=False)
if args.mode == 'estimator':
model = build_estimator(cfg.model)
else:
model = build_refiner(cfg.model)
# fp16 setting
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)
if hasattr(model, 'load_checkpoint'):
model.load_checkpoint(args.checkpoint)
else:
if len(args.checkpoint) > 0:
checkpoint = load_checkpoint(model, args.checkpoint[0])
# else:
# # init weights
# model.init_weights()
if args.seed is not None:
print(f"set seed to {args.seed}")
set_random_seed(args.seed)
if not distributed:
model = MMDataParallel(model, device_ids=[0])
start = time.time()
outputs = single_gpu_test(model, dataloader, validate=args.eval)
end = time.time()
per_image_consume_time = (end - start)/len(dataset)
print(f"per image consume time:{per_image_consume_time}")
else:
model.to(torch.device('cuda'))
model = MMDistributedDataParallel(
model,
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False)
outputs = multi_gpu_test(model, dataloader, gpu_collect=args.gpu_collect)
rank, _ = get_dist_info()
if rank == 0:
if args.out:
print(f"\n writing results to {args.out}")
mmcv.dump(outputs, args.out)
kwargs = {} if args.eval_options is None else args.eval_options
if args.format_only:
dataset.format_results(outputs, args.save_dir, time=per_image_consume_time+args.basetime, **kwargs)
if args.eval:
eval_kwargs = cfg.evaluation
eval_kwargs.pop('interval')
if 'save_best' in eval_kwargs:
eval_kwargs.pop('save_best')
if 'rule' in eval_kwargs:
eval_kwargs.pop('rule')
metric = dataset.evaluate(outputs, **eval_kwargs)
if cfg.work_dir is not None and rank == 0:
mmcv.dump(dict(config=args.config, checkpoint=args.checkpoint, metric=metric), json_file)
cfg.dump(json_file.replace('json', 'py'))