-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSimulatedAnnealing.py
182 lines (161 loc) · 7.53 KB
/
SimulatedAnnealing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
import sys
import sympy as sym
import numpy as np
import random as rd
# generate the neighboring cluster for one specific x_value
# return both x and y clusters
def cluster_search(x_value,function,num_in_cluster,upper_bound,lower_bound):
x_cluster=[]
y_cluster=[]
x=sym.symbols('x')
for count in range(num_in_cluster):
if x_value==0:
temp_x=rd.uniform(lower_bound,upper_bound)
temp_y=function.subs({x:temp_x})
else:
temp_x=rd.uniform(-2,2)*x_value
temp_y=function.subs({x:temp_x})
while (temp_x>upper_bound)|(temp_x<lower_bound):
temp_x=rd.uniform(-2,2)*x_value
temp_y=function.subs({x:temp_x})
x_cluster.append(temp_x)
y_cluster.append(temp_y)
return np.array(x_cluster).astype('float32'),np.array(y_cluster).astype('float32')
# calculate the distance of current node_list of TSP_discrete
def calculate_distance(node_list,list_length):
distance=0
for count in range(list_length-1):
interval=np.sum(np.square((node_list[count]-node_list[count+1])))
distance+=interval
distance+=np.sum(np.square((node_list[0]-node_list[list_length-1])))
distance=np.sqrt(distance)
return distance
# search the neighbors of current node_list of TSP_discrete
def neighbor_search(node_list,list_length):
neighborhood_list=[]
for count in range(list_length):
pos1=count
pos2=rd.randint(0,list_length-1)
while (pos1==pos2):
pos2=rd.randint(0,list_length-1)
# only one exchange from node_list
temp_list=node_list.copy()
temp_list[pos2]=node_list[pos1]
temp_list[pos1]=node_list[pos2]
neighborhood_list.append(temp_list)
return neighborhood_list
def SA_model(mode,*args):
if mode=='TSP_discrete':
# node_list is the numpy array of all destinations of the salesman
# list_length is the number of the destinations
# max_tolerance is the maximum number of time tolerating no new findings on better solutions
# the current solution will be regraded as the global best solution if the max_iteration is reached
# init_temperature is the initial temperature of SA
# inner_iteration is the iterating time for each temperature
# coeff_cooling is the cooling coefficient on temperature
# every inner_iteration times the temperature cool down by multiplying this coefficient
node_list=args[0]
list_length=args[1]
max_tolerance=args[2]
init_temperature=args[3]
inner_iteration=args[4]
coeff_cooling=args[5]
# initialization
distance_list=[]
solution_list=[]
tolerance=0
iter_count=0
temperature=init_temperature
best_distance=calculate_distance(node_list,list_length)
best_list=node_list.copy()
# print('The initial solution is %.3f' % best_distance)
distance_list.append(best_distance)
solution_list.append(best_list)
while tolerance<max_tolerance:
tolerance+=1
iter_count+=1
if iter_count % inner_iteration==0:
temperature*=coeff_cooling
neighborhood_list=neighbor_search(node_list,list_length)
temp_distance_list=[]
for count in range(list_length):
temp_distance=calculate_distance(neighborhood_list[count],list_length)
# update the current solution if a better choice is found
temp_distance_list.append(temp_distance)
min_distance=min(temp_distance_list)
if min_distance<best_distance:
index=np.argwhere(temp_distance_list==min_distance)
best_list=neighborhood_list[index[0,0]].copy()
node_list=neighborhood_list[index[0,0]]
best_distance=min_distance
distance_list.append(best_distance)
solution_list.append(best_list)
tolerance=0
# print('Iteration %d, the solution updates to %.3f' % (iter_count,best_distance))
else:
# all new choices are worse than the current solution
# accept the choice based on the evaluation of temperature and threshold
threshold=rd.uniform(0,1)
prob_list=np.exp(-(np.array(temp_distance_list)-np.ones(list_length)*best_distance)/temperature)
if threshold<max(prob_list):
index=np.argwhere(prob_list==max(prob_list))
node_list=neighborhood_list[index[0,0]]
return solution_list,distance_list
elif mode=='Function_continuous':
# function is the sympy representation of function with variable x
# upper_bound is the maximum value of x
# lower_bound is the minimum value of x
# max_tolerance is the maximum number of time tolerating no new findings on better solutions
# the current solution will be regraded as the global best solution if the max_iteration is reached
# init_temperature is the initial temperature of SA
# inner_iteration is the iterating time for each temperature
# coeff_cooling is the cooling coefficient on temperature
# every inner_iteration times the temperature cool down by multiplying this coefficient
function=args[0]
upper_bound=args[1]
lower_bound=args[2]
max_tolerance=args[3]
init_temperature=args[4]
inner_iteration=args[5]
coeff_cooling=args[6]
num_in_cluster=args[7]
# initialization
y_list=[]
x_list=[]
tolerance=0
iter_count=0
temperature=init_temperature
x=sym.symbols('x')
x_value=0
best_x_value=x_value
best_y_value=function.subs({x:x_value})
print('The initial solution is %.3f' % best_y_value)
x_list.append(best_x_value)
y_list.append(best_y_value)
while tolerance<max_tolerance:
tolerance+=1
iter_count+=1
if iter_count % inner_iteration==0:
temperature*=coeff_cooling
x_cluster,y_cluster=cluster_search(x_value,function,num_in_cluster,upper_bound,lower_bound)
max_y_value=max(y_cluster)
if max_y_value>best_y_value:
index=np.argwhere(y_cluster==max_y_value)
x_value=x_cluster[index[0,0]]
best_y_value=max_y_value
x_list.append(x_cluster[index[0,0]])
y_list.append(y_cluster[index[0,0]])
tolerance=0
print('Iteration %d, the solution updates to %.3f' % (iter_count,best_y_value))
else:
# all new choices are worse than the current solution
# accept the choice based on the evaluation of temperature and threshold
threshold=rd.uniform(0,1)
prob_list=np.exp((y_cluster-np.ones(num_in_cluster)*best_y_value)/temperature)
if threshold<max(prob_list):
index=np.argwhere(prob_list==max(prob_list))
x_value=x_cluster[index[0,0]]
else:
x_value=x_value
return np.array(x_list),np.array(y_list).astype('float32')