Skip to content

Latest commit

 

History

History
212 lines (149 loc) · 10.7 KB

changelog.md

File metadata and controls

212 lines (149 loc) · 10.7 KB

Changelog

v0.11.0 (1/3/2021)

Highlights

  • Support more friendly visualization interfaces based on open3d
  • Support a faster and more memory-efficient implementation of DynamicScatter
  • Refactor unit tests and details of configs

Bug Fixes

  • Fix an unsupported bias setting in the unit test for centerpoint head (#304)
  • Fix errors due to typos in the centerpoint head (#308)
  • Fix a minor bug in points_in_boxes.py when tensors are not in the same device. (#317)
  • Fix warning of deprecated usages of nonzero during training with pytorch 1.6 (#330)

New Features

  • Support new visualization methods based on open3d (#284, #323)

Improvements

  • Refactor unit tests (#303)
  • Move the key train_cfg and test_cfg into the model configs (#307)
  • Update README with Chinese version and instructions for getting started. (#310, #316)
  • Support a faster and more memory-efficient implementation of DynamicScatter (#318, #326)

v0.10.0 (1/2/2021)

Highlights

  • Preliminary release of API for SemanticKITTI dataset.
  • Documentation and demo enhancement for better user experience.
  • Fix a number of underlying minor bugs and add some corresponding important unit tests.

Bug Fixes

  • Fixed the issue of unpacking size in furthest_point_sample.py (#248)
  • Fix bugs for 3DSSD triggered by empty ground truths (#258)
  • Remove models without checkpoints in model zoo statistics of documentation (#259)
  • Fix some unclear installation instructions in getting_started.md (#269)
  • Fix relative paths/links in the documentation (#271)
  • Fix a minor bug in scatter_points_cuda.cu when num_features != 4 (#275)
  • Fix the bug about missing text files when testing on KITTI (#278)
  • Fix issues caused by inplace modification of tensors in BaseInstance3DBoxes (#283)
  • Fix log analysis for evaluation and adjust the documentation accordingly (#285)

New Features

  • Support SemanticKITTI dataset preliminarily (#287)

Improvements

  • Add tag to README in configurations for specifying different uses (#262)
  • Update instructions for evaluation metrics in the documentation (#265)
  • Add nuImages entry in README.md and gif demo (#266, #268)
  • Add unit test for voxelization (#275)

v0.9.0 (31/12/2020)

Highlights

  • Documentation refactoring with better structure, especially about how to implement new models and customized datasets.
  • More compatible with refactored point structure by bug fixes in ground truth sampling.

Bug Fixes

  • Fix point structure related bugs in ground truth sampling (#211)
  • Fix loading points in ground truth sampling augmentation on nuScenes (#221)
  • Fix channel setting in the SeparateHead of CenterPoint (#228)
  • Fix evaluation for indoors 3D detection in case of less classes in prediction (#231)
  • Remove unreachable lines in nuScenes data converter (#235)
  • Minor adjustments of numpy implementation for perspective projection and prediction filtering criterion in KITTI evaluation (#241)

Improvements

  • Documentation refactoring (#242)

v0.8.0 (30/11/2020)

Highlights

  • Refactor points structure with more constructive and clearer implementation.
  • Support axis-aligned IoU loss for VoteNet with better performance.
  • Update and enhance SECOND benchmark on Waymo.

New Features

  • Support axis-aligned IoU loss for VoteNet. (#194)
  • Support points structure for consistent processing of all the point related representation. (#196, #204)

Improvements

  • Enhance SECOND benchmark on Waymo with stronger baselines. (#205)
  • Add model zoo statistics and polish the documentation. (#201)

v0.7.0 (1/11/2020)

Highlights

  • Support a new method SSN with benchmarks on nuScenes and Lyft datasets.
  • Update benchmarks for SECOND on Waymo, CenterPoint with TTA on nuScenes and models with mixed precision training on KITTI and nuScenes.
  • Support semantic segmentation on nuImages and provide HTC models with configurations and performance for reference.

Bug Fixes

  • Fix incorrect code weights in anchor3d_head when introducing mixed precision training (#173)
  • Fix the incorrect label mapping on nuImages dataset (#155)

New Features

  • Modified primitive head which can support the setting on SUN-RGBD dataset (#136)
  • Support semantic segmentation and HTC with models for reference on nuImages dataset (#155)
  • Support SSN on nuScenes and Lyft datasets (#147, #174, #166, #182)
  • Support double flip for test time augmentation of CenterPoint with updated benchmark (#143)

Improvements

  • Update SECOND benchmark with configurations for reference on Waymo (#166)
  • Delete checkpoints on Waymo to comply its specific license agreement (#180)
  • Update models and instructions with mixed precision training on KITTI and nuScenes (#178)

v0.6.1 (11/10/2020)

Highlights

  • Support mixed precision training of voxel-based methods
  • Support docker with pytorch 1.6.0
  • Update baseline configs and results (CenterPoint on nuScenes and PointPillars on Waymo with full dataset)
  • Switch model zoo to download.openmmlab.com

Bug Fixes

  • Fix a bug of visualization in multi-batch case (#120)
  • Fix bugs in dcn unit test (#130)
  • Fix dcn bias bug in centerpoint (#137)
  • Fix dataset mapping in the evaluation of nuScenes mini dataset (#140)
  • Fix origin initialization in CameraInstance3DBoxes (#148, #150)
  • Correct documentation link in the getting_started.md (#159)
  • Fix model save path bug in gather_models.py (#153)
  • Fix image padding shape bug in PointFusion (#162)

New Features

  • Support dataset pipeline VoxelBasedPointSampler to sample multi-sweep points based on voxelization. (#125)
  • Support mixed precision training of voxel-based methods (#132)
  • Support docker with pytorch 1.6.0 (#160)

Improvements

  • Reduce requirements for the case exclusive of Waymo (#121)
  • Switch model zoo to download.openmmlab.com (#126)
  • Update docs related to Waymo (#128)
  • Add version assertion in the init file (#129)
  • Add evaluation interval setting for CenterPoint (#131)
  • Add unit test for CenterPoint (#133)
  • Update PointPillars baselines on Waymo with full dataset (#142)
  • Update CenterPoint results with models and logs (#154)

v0.6.0 (20/9/2020)

Highlights

  • Support new methods H3DNet, 3DSSD, CenterPoint.
  • Support new dataset Waymo (with PointPillars baselines) and nuImages (with Mask R-CNN and Cascade Mask R-CNN baselines).
  • Support Batch Inference
  • Support Pytorch 1.6
  • Start to publish mmdet3d package to PyPI since v0.5.0. You can use mmdet3d through pip install mmdet3d.

Backwards Incompatible Changes

  • Support Batch Inference (#95, #103, #116): MMDetection3D v0.6.0 migrates to support batch inference based on MMDetection >= v2.4.0. This change influences all the test APIs in MMDetection3D and downstream codebases.
  • Start to use collect environment function from MMCV (#113): MMDetection3D v0.6.0 migrates to use collect_env function in MMCV. get_compiler_version and get_compiling_cuda_version compiled in mmdet3d.ops.utils are removed. Please import these two functions from mmcv.ops.

Bug Fixes

  • Rename CosineAnealing to CosineAnnealing (#57)
  • Fix device inconsistant bug in 3D IoU computation (#69)
  • Fix a minor bug in json2csv of lyft dataset (#78)
  • Add missed test data for pointnet modules (#85)
  • Fix use_valid_flag bug in CustomDataset (#106)

New Features

  • Support nuImages dataset by converting them into coco format and release Mask R-CNN and Cascade Mask R-CNN baseline models (#91, #94)
  • Support to publish to PyPI in github-action (#17, #19, #25, #39, #40)
  • Support CBGSDataset and make it generally applicable to all the supported datasets (#75, #94)
  • Support H3DNet and release models on ScanNet dataset (#53, #58, #105)
  • Support Fusion Point Sampling used in 3DSSD (#66)
  • Add BackgroundPointsFilter to filter background points in data pipeline (#84)
  • Support pointnet2 with multi-scale grouping in backbone and refactor pointnets (#82)
  • Support dilated ball query used in 3DSSD (#96)
  • Support 3DSSD and release models on KITTI dataset (#83, #100, #104)
  • Support CenterPoint and release models on nuScenes dataset (#49, #92)
  • Support Waymo dataset and release PointPillars baseline models (#118)
  • Allow LoadPointsFromMultiSweeps to pad empty sweeps and select multiple sweeps randomly (#67)

Improvements

  • Fix all warnings and bugs in Pytorch 1.6.0 (#70, #72)
  • Update issue templates (#43)
  • Update unit tests (#20, #24, #30)
  • Update documentation for using ply format point cloud data (#41)
  • Use points loader to load point cloud data in ground truth (GT) samplers (#87)
  • Unify version file of OpenMMLab projects by using version.py (#112)
  • Remove unnecessary data preprocessing commands of SUN RGB-D dataset (#110)

v0.5.0 (9/7/2020)

MMDetection3D is released.