- Support more friendly visualization interfaces based on open3d
- Support a faster and more memory-efficient implementation of DynamicScatter
- Refactor unit tests and details of configs
- Fix an unsupported bias setting in the unit test for centerpoint head (#304)
- Fix errors due to typos in the centerpoint head (#308)
- Fix a minor bug in points_in_boxes.py when tensors are not in the same device. (#317)
- Fix warning of deprecated usages of nonzero during training with pytorch 1.6 (#330)
- Support new visualization methods based on open3d (#284, #323)
- Refactor unit tests (#303)
- Move the key
train_cfg
andtest_cfg
into the model configs (#307) - Update README with Chinese version and instructions for getting started. (#310, #316)
- Support a faster and more memory-efficient implementation of DynamicScatter (#318, #326)
- Preliminary release of API for SemanticKITTI dataset.
- Documentation and demo enhancement for better user experience.
- Fix a number of underlying minor bugs and add some corresponding important unit tests.
- Fixed the issue of unpacking size in furthest_point_sample.py (#248)
- Fix bugs for 3DSSD triggered by empty ground truths (#258)
- Remove models without checkpoints in model zoo statistics of documentation (#259)
- Fix some unclear installation instructions in getting_started.md (#269)
- Fix relative paths/links in the documentation (#271)
- Fix a minor bug in scatter_points_cuda.cu when num_features != 4 (#275)
- Fix the bug about missing text files when testing on KITTI (#278)
- Fix issues caused by inplace modification of tensors in
BaseInstance3DBoxes
(#283) - Fix log analysis for evaluation and adjust the documentation accordingly (#285)
- Support SemanticKITTI dataset preliminarily (#287)
- Add tag to README in configurations for specifying different uses (#262)
- Update instructions for evaluation metrics in the documentation (#265)
- Add nuImages entry in README.md and gif demo (#266, #268)
- Add unit test for voxelization (#275)
- Documentation refactoring with better structure, especially about how to implement new models and customized datasets.
- More compatible with refactored point structure by bug fixes in ground truth sampling.
- Fix point structure related bugs in ground truth sampling (#211)
- Fix loading points in ground truth sampling augmentation on nuScenes (#221)
- Fix channel setting in the SeparateHead of CenterPoint (#228)
- Fix evaluation for indoors 3D detection in case of less classes in prediction (#231)
- Remove unreachable lines in nuScenes data converter (#235)
- Minor adjustments of numpy implementation for perspective projection and prediction filtering criterion in KITTI evaluation (#241)
- Documentation refactoring (#242)
- Refactor points structure with more constructive and clearer implementation.
- Support axis-aligned IoU loss for VoteNet with better performance.
- Update and enhance SECOND benchmark on Waymo.
- Support axis-aligned IoU loss for VoteNet. (#194)
- Support points structure for consistent processing of all the point related representation. (#196, #204)
- Enhance SECOND benchmark on Waymo with stronger baselines. (#205)
- Add model zoo statistics and polish the documentation. (#201)
- Support a new method SSN with benchmarks on nuScenes and Lyft datasets.
- Update benchmarks for SECOND on Waymo, CenterPoint with TTA on nuScenes and models with mixed precision training on KITTI and nuScenes.
- Support semantic segmentation on nuImages and provide HTC models with configurations and performance for reference.
- Fix incorrect code weights in anchor3d_head when introducing mixed precision training (#173)
- Fix the incorrect label mapping on nuImages dataset (#155)
- Modified primitive head which can support the setting on SUN-RGBD dataset (#136)
- Support semantic segmentation and HTC with models for reference on nuImages dataset (#155)
- Support SSN on nuScenes and Lyft datasets (#147, #174, #166, #182)
- Support double flip for test time augmentation of CenterPoint with updated benchmark (#143)
- Update SECOND benchmark with configurations for reference on Waymo (#166)
- Delete checkpoints on Waymo to comply its specific license agreement (#180)
- Update models and instructions with mixed precision training on KITTI and nuScenes (#178)
- Support mixed precision training of voxel-based methods
- Support docker with pytorch 1.6.0
- Update baseline configs and results (CenterPoint on nuScenes and PointPillars on Waymo with full dataset)
- Switch model zoo to download.openmmlab.com
- Fix a bug of visualization in multi-batch case (#120)
- Fix bugs in dcn unit test (#130)
- Fix dcn bias bug in centerpoint (#137)
- Fix dataset mapping in the evaluation of nuScenes mini dataset (#140)
- Fix origin initialization in
CameraInstance3DBoxes
(#148, #150) - Correct documentation link in the getting_started.md (#159)
- Fix model save path bug in gather_models.py (#153)
- Fix image padding shape bug in
PointFusion
(#162)
- Support dataset pipeline
VoxelBasedPointSampler
to sample multi-sweep points based on voxelization. (#125) - Support mixed precision training of voxel-based methods (#132)
- Support docker with pytorch 1.6.0 (#160)
- Reduce requirements for the case exclusive of Waymo (#121)
- Switch model zoo to download.openmmlab.com (#126)
- Update docs related to Waymo (#128)
- Add version assertion in the init file (#129)
- Add evaluation interval setting for CenterPoint (#131)
- Add unit test for CenterPoint (#133)
- Update PointPillars baselines on Waymo with full dataset (#142)
- Update CenterPoint results with models and logs (#154)
- Support new methods H3DNet, 3DSSD, CenterPoint.
- Support new dataset Waymo (with PointPillars baselines) and nuImages (with Mask R-CNN and Cascade Mask R-CNN baselines).
- Support Batch Inference
- Support Pytorch 1.6
- Start to publish
mmdet3d
package to PyPI since v0.5.0. You can use mmdet3d throughpip install mmdet3d
.
- Support Batch Inference (#95, #103, #116): MMDetection3D v0.6.0 migrates to support batch inference based on MMDetection >= v2.4.0. This change influences all the test APIs in MMDetection3D and downstream codebases.
- Start to use collect environment function from MMCV (#113): MMDetection3D v0.6.0 migrates to use
collect_env
function in MMCV.get_compiler_version
andget_compiling_cuda_version
compiled inmmdet3d.ops.utils
are removed. Please import these two functions frommmcv.ops
.
- Rename CosineAnealing to CosineAnnealing (#57)
- Fix device inconsistant bug in 3D IoU computation (#69)
- Fix a minor bug in json2csv of lyft dataset (#78)
- Add missed test data for pointnet modules (#85)
- Fix
use_valid_flag
bug inCustomDataset
(#106)
- Support nuImages dataset by converting them into coco format and release Mask R-CNN and Cascade Mask R-CNN baseline models (#91, #94)
- Support to publish to PyPI in github-action (#17, #19, #25, #39, #40)
- Support CBGSDataset and make it generally applicable to all the supported datasets (#75, #94)
- Support H3DNet and release models on ScanNet dataset (#53, #58, #105)
- Support Fusion Point Sampling used in 3DSSD (#66)
- Add
BackgroundPointsFilter
to filter background points in data pipeline (#84) - Support pointnet2 with multi-scale grouping in backbone and refactor pointnets (#82)
- Support dilated ball query used in 3DSSD (#96)
- Support 3DSSD and release models on KITTI dataset (#83, #100, #104)
- Support CenterPoint and release models on nuScenes dataset (#49, #92)
- Support Waymo dataset and release PointPillars baseline models (#118)
- Allow
LoadPointsFromMultiSweeps
to pad empty sweeps and select multiple sweeps randomly (#67)
- Fix all warnings and bugs in Pytorch 1.6.0 (#70, #72)
- Update issue templates (#43)
- Update unit tests (#20, #24, #30)
- Update documentation for using
ply
format point cloud data (#41) - Use points loader to load point cloud data in ground truth (GT) samplers (#87)
- Unify version file of OpenMMLab projects by using
version.py
(#112) - Remove unnecessary data preprocessing commands of SUN RGB-D dataset (#110)
MMDetection3D is released.