-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_videoqa.py
142 lines (127 loc) · 4.31 KB
/
demo_videoqa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import torch
import torch.nn as nn
import numpy as np
import random
from transformers import DistilBertTokenizer
from args import get_args
from model.multimodal_transformer import MMT_VideoQA
from util import compute_a2v, get_mask
import ffmpeg
from extract.s3dg import S3D
from extract.preprocessing import Preprocessing
from global_parameters import S3D_PATH
# args
args = get_args()
assert args.pretrain_path
assert args.question_example
assert args.video_example
# set random seeds
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
# get answer embeddings
bert_tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
a2id, id2a, a2v = compute_a2v(
vocab_path=args.vocab_path,
bert_tokenizer=bert_tokenizer,
amax_words=args.amax_words,
)
print(f"Length of Answer Vocabulary: {len(a2id)}")
# Model
model = MMT_VideoQA(
feature_dim=args.feature_dim,
word_dim=args.word_dim,
N=args.n_layers,
d_model=args.embd_dim,
d_ff=args.ff_dim,
h=args.n_heads,
dropout=args.dropout,
T=args.max_feats,
Q=args.qmax_words,
baseline=args.baseline,
)
model.cuda()
# Load pretrain path
model = nn.DataParallel(model)
model.load_state_dict(torch.load(args.pretrain_path))
model.eval()
model.module._compute_answer_embedding(a2v)
question_txt = args.question_example
video_path = args.video_example
# Tokenize Question
question = torch.tensor(
model.module.bert.bert_tokenizer.encode(
question_txt,
add_special_tokens=True,
padding="max_length",
max_length=args.qmax_words,
truncation=True,
),
dtype=torch.long,
)
question = question.cuda().unsqueeze(0)
question_mask = question > 0
# Video Extractor
video_extractor = S3D(512, space_to_depth=True, embd=1, feature_map=0)
video_extractor.load_state_dict(torch.load(S3D_PATH))
video_extractor.eval()
video_extractor = torch.nn.DataParallel(video_extractor)
video_extractor = video_extractor.cuda()
preprocess = Preprocessing(num_frames=16)
with torch.no_grad():
# Extract Video Feature
probe = ffmpeg.probe(video_path)
video_stream = next(
(stream for stream in probe["streams"] if stream["codec_type"] == "video"), None
)
width = int(video_stream["width"])
height = int(video_stream["height"])
num, denum = video_stream["avg_frame_rate"].split("/")
frame_rate = int(num) / int(denum)
if height >= width:
h, w = int(height * 224 / width), 224
else:
h, w = 224, int(width * 224 / height)
assert frame_rate >= 1
cmd = ffmpeg.input(video_path).filter("fps", fps=16).filter("scale", w, h)
x = int((w - 224) / 2.0)
y = int((h - 224) / 2.0)
cmd = cmd.crop(x, y, 224, 224)
out, _ = cmd.output("pipe:", format="rawvideo", pix_fmt="rgb24").run(
capture_stdout=True, quiet=True
)
h, w = 224, 224
video = np.frombuffer(out, np.uint8).reshape([-1, h, w, 3])
video = torch.from_numpy(video.astype("float32"))
video = video.permute(0, 3, 1, 2)
video = video.squeeze().cuda()
video = preprocess(video)
video = video_extractor(video)
# Pad Video
if len(video) < args.max_feats:
video = video[: args.max_feats]
video_len = len(video)
if len(video) < args.max_feats:
video = torch.cat(
[video, torch.zeros(args.max_feats - len(video), video.shape[1]).cuda()]
)
else:
sampled = []
for j in range(args.max_feats):
sampled.append(video[(j * len(video)) // args.max_feats])
video = torch.stack(sampled)
video_len = len(video)
video_len = torch.Tensor([video_len])
video = video.unsqueeze(0)
video_mask = get_mask(video_len, video.size(1)).cuda()
# Get Predictions
predicts = model(
video, question=question, text_mask=question_mask, video_mask=video_mask
)
topk = torch.topk(predicts, dim=1, k=5)
topk_txt = [[id2a[x.item()] for x in y] for y in topk.indices.cpu()]
topk_scores = [[f"{x:.2f}".format() for x in y] for y in topk.values.cpu()]
topk_all = [
[x + "(" + y + ")" for x, y in zip(a, b)] for a, b in zip(topk_txt, topk_scores)
]
print(f"Top 5 answers and scores: {topk_all[0]}")