From e535a2a0b58d5dafdf2ba57448ce2c54ab0603d3 Mon Sep 17 00:00:00 2001 From: jondeuce <20175323+jondeuce@users.noreply.github.com> Date: Wed, 22 Mar 2023 01:21:40 -0700 Subject: [PATCH] `LinearAlgebra.norm(x::Union{Transpose, Adjoint})` should default to `norm(parent(x))` (#49020) --- NEWS.md | 2 ++ stdlib/LinearAlgebra/src/generic.jl | 2 +- stdlib/LinearAlgebra/test/generic.jl | 18 ++++++++++++++++++ 3 files changed, 21 insertions(+), 1 deletion(-) diff --git a/NEWS.md b/NEWS.md index c96d1a2365410..028c388d754aa 100644 --- a/NEWS.md +++ b/NEWS.md @@ -69,6 +69,8 @@ Standard library changes `Factorization` ([#46874]). * New functions `hermitianpart` and `hermitianpart!` for extracting the Hermitian (real symmetric) part of a matrix ([#31836]). +* The `norm` of the adjoint or transpose of an `AbstractMatrix` now returns the norm of the + parent matrix by default, matching the current behaviour for `AbstractVector`s ([#49020]). #### Printf * Format specifiers now support dynamic width and precision, e.g. `%*s` and `%*.*g` ([#40105]). diff --git a/stdlib/LinearAlgebra/src/generic.jl b/stdlib/LinearAlgebra/src/generic.jl index ede42c2dbf9d7..0c947936dee6b 100644 --- a/stdlib/LinearAlgebra/src/generic.jl +++ b/stdlib/LinearAlgebra/src/generic.jl @@ -805,7 +805,7 @@ opnorm(v::AdjointAbsVec, q::Real) = q == Inf ? norm(conj(v.parent), 1) : norm(co opnorm(v::AdjointAbsVec) = norm(conj(v.parent)) opnorm(v::TransposeAbsVec) = norm(v.parent) -norm(v::Union{TransposeAbsVec,AdjointAbsVec}, p::Real) = norm(v.parent, p) +norm(v::AdjOrTrans, p::Real) = norm(v.parent, p) """ dot(x, y) diff --git a/stdlib/LinearAlgebra/test/generic.jl b/stdlib/LinearAlgebra/test/generic.jl index a95827867cd18..108d3aec8f069 100644 --- a/stdlib/LinearAlgebra/test/generic.jl +++ b/stdlib/LinearAlgebra/test/generic.jl @@ -269,6 +269,24 @@ end @test norm(x, 3) ≈ cbrt(5^3 +sqrt(5)^3) end +@testset "norm of transpose/adjoint equals norm of parent #32739" begin + for t in (transpose, adjoint), elt in (Float32, Float64, BigFloat, ComplexF32, ComplexF64, Complex{BigFloat}) + # Vector/matrix of scalars + for sz in ((2,), (2, 3)) + A = rand(elt, sz...) + Aᵀ = t(A) + @test norm(Aᵀ) ≈ norm(Matrix(Aᵀ)) + end + + # Vector/matrix of vectors/matrices + for sz_outer in ((2,), (2, 3)), sz_inner in ((3,), (1, 2)) + A = [rand(elt, sz_inner...) for _ in CartesianIndices(sz_outer)] + Aᵀ = t(A) + @test norm(Aᵀ) ≈ norm(Matrix(Matrix.(Aᵀ))) + end + end +end + @testset "rotate! and reflect!" begin x = rand(ComplexF64, 10) y = rand(ComplexF64, 10)