-
Notifications
You must be signed in to change notification settings - Fork 35
/
ctran.py
48 lines (38 loc) · 1.67 KB
/
ctran.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from timm.models.layers.helpers import to_2tuple
import timm
import torch.nn as nn
class ConvStem(nn.Module):
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=768, norm_layer=None, flatten=True):
super().__init__()
assert patch_size == 4
assert embed_dim % 8 == 0
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
self.num_patches = self.grid_size[0] * self.grid_size[1]
self.flatten = flatten
stem = []
input_dim, output_dim = 3, embed_dim // 8
for l in range(2):
stem.append(nn.Conv2d(input_dim, output_dim, kernel_size=3, stride=2, padding=1, bias=False))
stem.append(nn.BatchNorm2d(output_dim))
stem.append(nn.ReLU(inplace=True))
input_dim = output_dim
output_dim *= 2
stem.append(nn.Conv2d(input_dim, embed_dim, kernel_size=1))
self.proj = nn.Sequential(*stem)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
B, C, H, W = x.shape
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x)
if self.flatten:
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
x = self.norm(x)
return x
def ctranspath():
model = timm.create_model('swin_tiny_patch4_window7_224', embed_layer=ConvStem, pretrained=False)
return model