-
Notifications
You must be signed in to change notification settings - Fork 0
/
val_iou.py
58 lines (45 loc) · 1.53 KB
/
val_iou.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
import metrics
from dataset import RsDataset
from net.deeplabv3 import DeepLabv3
from path import *
src_transforms = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor()
])
def label_transforms(x):
# img = transforms.ToTensor()(x)
img = torch.from_numpy(x)
img = img.type(torch.LongTensor)
return img
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
def test_model(net, dataloaders_test):
net = net.eval()
net = net.to(device)
step = 0
total_iou = [0, 0, 0, 0, 0]
miou = []
print('Testing...')
for x, y in dataloaders_test:
step += 1
inputs = x.to(device)
labels = y.to(device)
outputs = net(inputs)
outputs = torch.max(outputs, 1)[1]
ious = metrics.IoU(outputs, labels, n_classes=6)
for i in range(0, 5):
total_iou[i] += ious[i]
for i in range(0, 5):
miou.append(total_iou[i] / len(dataloaders_test.dataset))
return miou
if __name__ == '__main__':
model = DeepLabv3(num_classes=6, backbone='resnet101', pretrained=True)
model.load_state_dict(
torch.load('models/DeepLabV3+_RS_Seg_newdataset_Run4_batch16_epoch12model.pth', map_location='cuda:0'))
dataset = RsDataset(val_src_root, val_label_root, src_transforms, label_transforms)
dataloader_test = DataLoader(dataset, batch_size=1)
miou = []
miou = test_model(model, dataloader_test)
print(miou)