-
Notifications
You must be signed in to change notification settings - Fork 3
/
otla_sk.py
74 lines (64 loc) · 2.83 KB
/
otla_sk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import time
import numpy as np
import torch
import torch.nn as nn
from utils import sort_list_with_unique_index
from sklearn.cluster import DBSCAN
import faiss
import torch.nn.functional as F
from clustercontrast.utils.faiss_rerank import compute_jaccard_distance
from IPython import embed
def cpu_sk_ir_trainloader(args, main_net, trainloader, tIndex, n_class, print_freq=50):
main_net.train()
n_ir = len(tIndex)
P = np.zeros((n_ir, n_class))
feats = []
with torch.no_grad():
for batch_idx, (_, input_rgb, input_ir, label_rgb, label_ir, _, _) in enumerate(trainloader):
t = time.time()
input_ir = input_ir.cuda()
feat, p, _ = main_net(input_ir, input_ir, modal=2, train_set=False)
p_softmax = nn.Softmax(1)(p).cpu().numpy()
P[batch_idx * args.train_batch_size * args.num_pos:(batch_idx + 1) * args.train_batch_size * args.num_pos, :] = p_softmax
if batch_idx == 0:
ir_real_label = label_ir
else:
ir_real_label = torch.cat((ir_real_label, label_ir), dim=0)
if (batch_idx + 1) % print_freq == 0:
print("Extract predictions: [{}/{}]\t"
"Time consuming: {:.3f}\t"
.format(batch_idx + 1, len(trainloader), time.time() - t))
# optimize label using Sinkhorn-Knopp algorithm
unique_tIndex_first_idx, unique_tIndex_last_idx, unique_tIndex_num, idx_order, unique_tIndex_list = sort_list_with_unique_index(tIndex)
unique_tIndex_idx = unique_tIndex_last_idx # last
ir_real_label = ir_real_label[unique_tIndex_idx]
P_ = P[unique_tIndex_idx]
for i, idx in enumerate(idx_order):
P_[i] = (P[unique_tIndex_list[idx]].mean(axis=0))
PS = (P_.T) ** args.lambda_sk
n_ir_unique = len(np.unique(tIndex))
alpha = np.ones((n_class, 1)) / n_class # initial value for alpha
beta = np.ones((n_ir_unique, 1)) / n_ir_unique # initial value for beta
inv_K = 1. / n_class
inv_N = 1. / n_ir_unique
err = 1e6
step = 0
tt = time.time()
while err > 1e-1:
alpha = inv_K / (PS @ beta) # (KxN) @ (N,1) = K x 1
beta_new = inv_N / (alpha.T @ PS).T # ((1,K) @ (KxN)).t() = N x 1
if step % 10 == 0:
err = np.nansum(np.abs(beta / beta_new - 1))
beta = beta_new
step += 1
print("Sinkhorn-Knopp Error: {:.3f} Total step: {} Total time: {:.3f}".format(err, step, time.time() - tt))
PS *= np.squeeze(beta)
PS = PS.T
PS *= np.squeeze(alpha)
PS = PS.T
argmaxes = np.nanargmax(PS, 0) # size n_ir
ir_pseudo_label_op = torch.LongTensor(argmaxes)
# the max prediction of softmax
argmaxes_ = np.nanargmax(P_, 1)
ir_pseudo_label_mp = torch.LongTensor(argmaxes_)
return ir_pseudo_label_op, ir_pseudo_label_mp, ir_real_label, tIndex[unique_tIndex_idx]