forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfcos_hrnetv2p-w32-gn-head_4xb4-1x_coco.py
43 lines (43 loc) · 1.33 KB
/
fcos_hrnetv2p-w32-gn-head_4xb4-1x_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
_base_ = '../fcos/fcos_r50-caffe_fpn_gn-head_4xb4-1x_coco.py'
model = dict(
data_preprocessor=dict(
mean=[103.53, 116.28, 123.675],
std=[57.375, 57.12, 58.395],
bgr_to_rgb=False),
backbone=dict(
_delete_=True,
type='HRNet',
extra=dict(
stage1=dict(
num_modules=1,
num_branches=1,
block='BOTTLENECK',
num_blocks=(4, ),
num_channels=(64, )),
stage2=dict(
num_modules=1,
num_branches=2,
block='BASIC',
num_blocks=(4, 4),
num_channels=(32, 64)),
stage3=dict(
num_modules=4,
num_branches=3,
block='BASIC',
num_blocks=(4, 4, 4),
num_channels=(32, 64, 128)),
stage4=dict(
num_modules=3,
num_branches=4,
block='BASIC',
num_blocks=(4, 4, 4, 4),
num_channels=(32, 64, 128, 256))),
init_cfg=dict(
type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w32')),
neck=dict(
_delete_=True,
type='HRFPN',
in_channels=[32, 64, 128, 256],
out_channels=256,
stride=2,
num_outs=5))