-
Notifications
You must be signed in to change notification settings - Fork 0
/
PrimeNumberofSetBitsinBinaryRepresentation*
65 lines (55 loc) · 1.35 KB
/
PrimeNumberofSetBitsinBinaryRepresentation*
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
/************************************/
Given two integers L and R, find the count of numbers in the range [L, R] (inclusive) having a prime number of set bits in their binary representation.
(Recall that the number of set bits an integer has is the number of 1s present when written in binary. For example, 21 written in binary is 10101 which has 3 set bits. Also, 1 is not a prime.)
Example 1:
Input: L = 6, R = 10
Output: 4
Explanation:
6 -> 110 (2 set bits, 2 is prime)
7 -> 111 (3 set bits, 3 is prime)
9 -> 1001 (2 set bits , 2 is prime)
10->1010 (2 set bits , 2 is prime)
Example 2:
Input: L = 10, R = 15
Output: 5
Explanation:
10 -> 1010 (2 set bits, 2 is prime)
11 -> 1011 (3 set bits, 3 is prime)
12 -> 1100 (2 set bits, 2 is prime)
13 -> 1101 (3 set bits, 3 is prime)
14 -> 1110 (3 set bits, 3 is prime)
15 -> 1111 (4 set bits, 4 is not prime)
Note:
/*********************************/
class Solution {
public:
int countPrimeSetBits(int L, int R) {
int count = 0;
for (int i = L; i <= R; i++) {
int sum = func(i);
if (isPrime(sum) == 1) {
count++;
}
}
return count;
}
int func(int x) {
int cnt = 0;
while (x) {
cnt++;
x = x & (x - 1);
}
return cnt;
}
int isPrime(int x) {
if (x == 1) {
return 0;
}
for (int i = 2; i <= sqrt(x); i++) {
if (x%i == 0) {
return 0;
}
}
return 1;
}
};