-
Notifications
You must be signed in to change notification settings - Fork 0
/
MonadicRewrite.thy
547 lines (471 loc) · 22.5 KB
/
MonadicRewrite.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
(*
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*)
(* A theory of rewriting under refinement. *)
theory MonadicRewrite
imports
NonDetMonadVCG
Corres_UL
EmptyFailLib
LemmaBucket
begin
definition
monadic_rewrite :: "bool \<Rightarrow> bool \<Rightarrow> ('a \<Rightarrow> bool)
\<Rightarrow> ('a, 'b) nondet_monad \<Rightarrow> ('a, 'b) nondet_monad \<Rightarrow> bool"
where
"monadic_rewrite F E P f g \<equiv> \<forall>s. P s \<and> (F \<longrightarrow> \<not> snd (f s))
\<longrightarrow> (E \<longrightarrow> f s = g s)
\<and> (\<not> E \<longrightarrow> fst (g s) \<subseteq> fst (f s) \<and> (snd (g s) \<longrightarrow> snd (f s)))"
(* FIXME: also in Retype_C *)
lemma snd_bind:
"snd ((a >>= b) s) = (snd (a s) \<or> (\<exists>(r, s') \<in> fst (a s). snd (b r s')))"
by (auto simp add: bind_def split_def)
lemma monadic_rewrite_bind:
"\<lbrakk> monadic_rewrite F E P f g; \<And>x. monadic_rewrite F E (Q x) (h x) (j x);
\<lbrace>R\<rbrace> g \<lbrace>Q\<rbrace> \<rbrakk>
\<Longrightarrow> monadic_rewrite F E (P and R) (f >>= (\<lambda>x. h x)) (g >>= (\<lambda>x. j x))"
apply (cases E)
apply (clarsimp simp: monadic_rewrite_def snd_bind imp_conjL)
apply (drule spec, drule(1) mp, clarsimp)
apply (rule bind_apply_cong)
apply simp
apply (frule(2) use_valid)
apply fastforce
apply (clarsimp simp: monadic_rewrite_def snd_bind imp_conjL)
apply (simp add: bind_def split_def)
apply (rule conjI)
apply (rule UN_mono)
apply simp
apply clarsimp
apply (frule(2) use_valid)
apply fastforce
apply (rule conjI)
apply fastforce
apply clarsimp
apply (frule(2) use_valid)
apply fastforce
done
lemma monadic_rewrite_refl:
"monadic_rewrite F E \<top> f f"
by (simp add: monadic_rewrite_def)
lemma monadic_rewrite_bindE:
"\<lbrakk> monadic_rewrite F E P f g; \<And>x. monadic_rewrite F E (Q x) (h x) (j x);
\<lbrace>R\<rbrace> g \<lbrace>Q\<rbrace>,- \<rbrakk>
\<Longrightarrow> monadic_rewrite F E (P and R) (f >>=E (\<lambda>x. h x)) (g >>=E (\<lambda>x. j x))"
apply (simp add: bindE_def)
apply (erule monadic_rewrite_bind)
defer
apply (simp add: validE_R_def validE_def)
apply (case_tac x, simp_all add: lift_def monadic_rewrite_refl)
done
lemma monadic_rewrite_catch:
"\<lbrakk> monadic_rewrite F E P f g; \<And>x. monadic_rewrite F E (Q x) (h x) (j x);
\<lbrace>R\<rbrace> g -,\<lbrace>Q\<rbrace> \<rbrakk>
\<Longrightarrow> monadic_rewrite F E (P and R) (f <catch> (\<lambda>x. h x)) (g <catch> (\<lambda>x. j x))"
apply (simp add: catch_def)
apply (erule monadic_rewrite_bind)
defer
apply (simp add: validE_E_def validE_def)
apply (case_tac x, simp_all add: lift_def monadic_rewrite_refl)
done
lemma monadic_rewrite_symb_exec_pre:
assumes inv: "\<And>s. \<lbrace>(=) s\<rbrace> g \<lbrace>\<lambda>r. (=) s\<rbrace>"
and ef: "empty_fail g"
and rv: "\<lbrace>P\<rbrace> g \<lbrace>\<lambda>y s. y \<in> S\<rbrace>"
and h': "\<And>y. y \<in> S \<longrightarrow> h y = h'"
shows "monadic_rewrite True True P (g >>= h) h'"
proof -
have P: "\<And>s v. \<lbrakk> P s; v \<in> fst (g s) \<rbrakk> \<Longrightarrow> split h v = h' s"
apply clarsimp
apply (frule use_valid[OF _ inv], rule refl)
apply (frule(1) use_valid[OF _ rv])
apply (simp add: h')
done
show ?thesis
apply (clarsimp simp: monadic_rewrite_def bind_def P image_constant_conv
cong: image_cong)
apply (drule empty_failD2[OF ef])
apply (clarsimp simp: prod_eq_iff split: if_split_asm)
done
qed
lemma monadic_rewrite_trans:
"\<lbrakk> monadic_rewrite F E P f g; monadic_rewrite F E Q g h \<rbrakk>
\<Longrightarrow> monadic_rewrite F E (P and Q) f h"
by (auto simp add: monadic_rewrite_def)
lemma singleton_eq_imp_helper:
"v \<in> {x} \<longrightarrow> h v = h x" by simp
lemmas monadic_rewrite_symb_exec
= monadic_rewrite_symb_exec_pre [OF _ _ _ singleton_eq_imp_helper,
THEN monadic_rewrite_trans,
simplified]
lemma eq_UNIV_imp_helper:
"v \<in> UNIV \<longrightarrow> x = x" by simp
lemmas monadic_rewrite_symb_exec2
= monadic_rewrite_symb_exec_pre[OF _ _ _ eq_UNIV_imp_helper, where P=\<top>,
simplified, THEN monadic_rewrite_trans]
lemma monadic_rewrite_imp:
"\<lbrakk> monadic_rewrite F E Q f g; \<And>s. P s \<Longrightarrow> Q s \<rbrakk> \<Longrightarrow> monadic_rewrite F E P f g"
by (auto simp add: monadic_rewrite_def)
lemmas monadic_rewrite_bind_tail
= monadic_rewrite_bind [OF monadic_rewrite_refl, simplified pred_and_true_var]
lemmas monadic_rewrite_bind_head
= monadic_rewrite_bind [OF _ monadic_rewrite_refl hoare_vcg_prop,
simplified pred_and_true]
lemma monadic_rewrite_bind2:
"\<lbrakk> monadic_rewrite F E P f g; \<And>x. monadic_rewrite F E (Q x) (h x) (j x);
\<lbrace>R\<rbrace> f \<lbrace>Q\<rbrace> \<rbrakk>
\<Longrightarrow> monadic_rewrite F E (P and R) (f >>= (\<lambda>x. h x)) (g >>= (\<lambda>x. j x))"
apply (rule monadic_rewrite_imp)
apply (rule monadic_rewrite_trans)
apply (erule(1) monadic_rewrite_bind_tail)
apply (erule monadic_rewrite_bind_head)
apply simp
done
lemma monadic_rewrite_if:
"\<lbrakk> P \<Longrightarrow> monadic_rewrite F E Q a c; \<not> P \<Longrightarrow> monadic_rewrite F E R b d \<rbrakk> \<Longrightarrow>
monadic_rewrite F E (\<lambda>s. (P \<longrightarrow> Q s) \<and> (\<not> P \<longrightarrow> R s))
(If P a b) (If P c d)"
by (cases P, simp_all)
lemma monadic_rewrite_liftM:
"monadic_rewrite F E P f g \<Longrightarrow> monadic_rewrite F E P (liftM fn f) (liftM fn g)"
apply (simp add: liftM_def)
apply (erule monadic_rewrite_bind_head)
done
lemmas monadic_rewrite_liftE
= monadic_rewrite_liftM[where fn=Inr, folded liftE_liftM]
lemma monadic_rewrite_from_simple:
"P \<longrightarrow> f = g \<Longrightarrow> monadic_rewrite F E (\<lambda>_. P) f g"
by (simp add: monadic_rewrite_def)
lemma monadic_rewrite_gen_asm:
"\<lbrakk> P \<Longrightarrow> monadic_rewrite F E Q f g \<rbrakk> \<Longrightarrow> monadic_rewrite F E ((\<lambda>_. P) and Q) f g"
by (auto simp add: monadic_rewrite_def)
lemma monadic_rewrite_assert:
"\<lbrakk> Q \<Longrightarrow> monadic_rewrite True E P (f ()) g \<rbrakk>
\<Longrightarrow> monadic_rewrite True E (\<lambda>s. Q \<longrightarrow> P s) (assert Q >>= f) g"
apply (simp add: assert_def split: if_split)
apply (simp add: monadic_rewrite_def fail_def)
done
lemma monadic_rewrite_drop_modify:
"monadic_rewrite F E (\<lambda>s. f s = s) (modify f >>= v) (v ())"
by (simp add: monadic_rewrite_def bind_def simpler_modify_def)
lemma monadic_rewrite_symb_exec_r:
"\<lbrakk> \<And>s. \<lbrace>(=) s\<rbrace> m \<lbrace>\<lambda>r. (=) s\<rbrace>; no_fail P' m;
\<And>rv. monadic_rewrite F False (Q rv) x (y rv);
\<lbrace>P\<rbrace> m \<lbrace>Q\<rbrace> \<rbrakk>
\<Longrightarrow> monadic_rewrite F False (P and P') x (m >>= y)"
apply (clarsimp simp: monadic_rewrite_def bind_def)
apply (drule(1) no_failD)
apply (subgoal_tac "\<forall>v \<in> fst (m s). Q (fst v) (snd v) \<and> snd v = s")
apply fastforce
apply clarsimp
apply (frule(2) use_valid)
apply (frule use_valid, assumption, rule refl)
apply simp
done
lemma monadic_rewrite_symb_exec_r':
"\<lbrakk> \<And>s. \<lbrace>(=) s\<rbrace> m \<lbrace>\<lambda>r. (=) s\<rbrace>; no_fail P m;
\<And>rv. monadic_rewrite F False (Q rv) x (y rv);
\<lbrace>P\<rbrace> m \<lbrace>Q\<rbrace> \<rbrakk>
\<Longrightarrow> monadic_rewrite F False P x (m >>= y)"
apply (rule monadic_rewrite_imp)
apply (rule monadic_rewrite_symb_exec_r; assumption)
apply simp
done
lemma monadic_rewrite_symb_exec_l'':
"\<lbrakk> \<And>s. \<lbrace>(=) s\<rbrace> m \<lbrace>\<lambda>r. (=) s\<rbrace>; empty_fail m;
\<not> F \<longrightarrow> no_fail P' m;
\<And>rv. monadic_rewrite F False (Q rv) (x rv) y;
\<lbrace>P\<rbrace> m \<lbrace>Q\<rbrace> \<rbrakk>
\<Longrightarrow> monadic_rewrite F False (P and P') (m >>= x) y"
apply (clarsimp simp: monadic_rewrite_def bind_def)
apply (subgoal_tac "\<not> snd (m s)")
apply (subgoal_tac "\<forall>v \<in> fst (m s). Q (fst v) (snd v) \<and> snd v = s")
apply (frule(1) empty_failD2)
apply (clarsimp simp: split_def)
apply fastforce
apply clarsimp
apply (frule(2) use_valid)
apply (frule use_valid, assumption, rule refl)
apply simp
apply (cases F, simp_all add: no_failD)
done
lemma monadic_rewrite_symb_exec_l':
"\<lbrakk> \<And>P. \<lbrace>P\<rbrace> m \<lbrace>\<lambda>r. P\<rbrace>; empty_fail m;
\<not> F \<longrightarrow> no_fail P' m;
\<And>rv. monadic_rewrite F E (Q rv) (x rv) y;
\<lbrace>P\<rbrace> m \<lbrace>Q\<rbrace> \<rbrakk>
\<Longrightarrow> monadic_rewrite F E (P and P') (m >>= x) y"
apply (cases E)
apply (clarsimp simp: monadic_rewrite_def bind_def prod_eq_iff)
apply (subgoal_tac "\<not> snd (m s)")
apply (simp add: empty_fail_def, drule_tac x=s in spec)
apply (subgoal_tac "\<forall>(rv, s') \<in> fst (m s). x rv s' = y s")
apply (rule conjI)
apply (rule equalityI)
apply (clarsimp simp: Ball_def)
apply (fastforce simp: Ball_def elim!: nonemptyE elim: rev_bexI)
apply (simp add: Bex_def Ball_def cong: conj_cong)
apply auto[1]
apply clarsimp
apply (drule(1) in_inv_by_hoareD)
apply (frule(2) use_valid)
apply (clarsimp simp: Ball_def prod_eq_iff)
apply (clarsimp simp: no_fail_def)
apply simp
apply (rule monadic_rewrite_symb_exec_l'', assumption+)
done
(* FIXME this should replace monadic_rewrite_symb_exec_l' as it preserves names,
and this approach should be used everywhere else anyhow, however that breaks proofs
relying on arbitrarily generated names, so will be dealt with in future *)
lemma monadic_rewrite_symb_exec_l'_preserve_names:
"\<lbrakk> \<And>P. \<lbrace>P\<rbrace> m \<lbrace>\<lambda>r. P\<rbrace>; empty_fail m;
\<not> F \<longrightarrow> no_fail P' m;
\<And>rv. monadic_rewrite F E (Q rv) (x rv) y;
\<lbrace>P\<rbrace> m \<lbrace>Q\<rbrace> \<rbrakk>
\<Longrightarrow> monadic_rewrite F E (P and P') (m >>= (\<lambda>rv. x rv)) y"
by (rule monadic_rewrite_symb_exec_l')
(* FIXME merge into below upon change-over desribed above *)
lemmas monadic_rewrite_symb_exec_l'_TT
= monadic_rewrite_symb_exec_l'_preserve_names[where P'="\<top>" and F=True, simplified]
lemmas monadic_rewrite_symb_exec_l
= monadic_rewrite_symb_exec_l''[where F=True and P'=\<top>, simplified]
monadic_rewrite_symb_exec_l''[where F=False, simplified simp_thms]
lemma monadic_rewrite_alternative_rhs:
"\<lbrakk> monadic_rewrite F E P a b; monadic_rewrite F E Q a c \<rbrakk>
\<Longrightarrow> monadic_rewrite F E (P and Q) a (b \<sqinter> c)"
apply (clarsimp simp: monadic_rewrite_def alternative_def)
apply auto
done
lemma monadic_rewrite_rdonly_bind:
"\<lbrakk> \<And>s. \<lbrace>(=) s\<rbrace> f \<lbrace>\<lambda>rv. (=) s\<rbrace> \<rbrakk> \<Longrightarrow>
monadic_rewrite F False \<top>
(alternative (f >>= (\<lambda>x. g x)) h)
(f >>= (\<lambda>x. alternative (g x) h))"
apply (clarsimp simp: monadic_rewrite_def bind_def
alternative_def imp_conjL)
apply (subgoal_tac "\<forall>x \<in> fst (f s). snd x = s")
apply (simp add: image_image split_def cong: image_cong)
apply fastforce
apply clarsimp
apply (frule use_valid, (assumption | rule refl | simp)+)
done
lemmas monadic_rewrite_rdonly_bind_l
= monadic_rewrite_trans [OF monadic_rewrite_rdonly_bind]
lemma monadic_rewrite_if_rhs:
"\<lbrakk> P \<Longrightarrow> monadic_rewrite F E Q a b; \<not> P \<Longrightarrow> monadic_rewrite F E R a c \<rbrakk>
\<Longrightarrow> monadic_rewrite F E (\<lambda>s. (P \<longrightarrow> Q s) \<and> (\<not> P \<longrightarrow> R s))
a (If P b c)"
by (cases P, simp_all)
lemma monadic_rewrite_transverse:
"\<lbrakk> monadic_rewrite False True Q c b; monadic_rewrite F E P a b \<rbrakk>
\<Longrightarrow> monadic_rewrite F E (P and Q) a c"
by (auto simp add: monadic_rewrite_def)
lemma monadic_rewrite_alternative_l:
"monadic_rewrite F False \<top> (alternative f g) g"
by (clarsimp simp: monadic_rewrite_def alternative_def)
lemma monadic_rewrite_introduce_alternative:
"\<lbrakk> f = f'; monadic_rewrite F E P (alternative f' f) g \<rbrakk>
\<Longrightarrow> monadic_rewrite F E P f g"
by (simp add: alternative_def)
lemma monadic_rewrite_modify_noop:
"monadic_rewrite F E (\<lambda>s. f s = s) (modify f) (return ())"
by (clarsimp simp: monadic_rewrite_def simpler_modify_def return_def)
lemma monadic_rewrite_split_fn:
"\<lbrakk> monadic_rewrite F E P (liftM fn a) c;
\<And>rv. monadic_rewrite F E (Q rv) (b rv) (d (fn rv));
\<lbrace>R\<rbrace> a \<lbrace>Q\<rbrace> \<rbrakk> \<Longrightarrow>
monadic_rewrite F E (P and R) (a >>= b) (c >>= d)"
apply (rule monadic_rewrite_imp)
apply (rule monadic_rewrite_trans[rotated])
apply (erule monadic_rewrite_bind_head)
apply (simp add: liftM_def)
apply (erule(1) monadic_rewrite_bind_tail)
apply simp
done
lemma monadic_rewrite_pick_alternative_1:
"monadic_rewrite F False \<top> (alternative f g) f"
by (auto simp add: monadic_rewrite_def alternative_def)
lemma monadic_rewrite_pick_alternative_2:
"monadic_rewrite F False \<top> (alternative f g) g"
by (auto simp add: monadic_rewrite_def alternative_def)
lemma monadic_rewrite_weaken:
"monadic_rewrite (F \<and> F') (E \<or> E') P f g
\<Longrightarrow> monadic_rewrite F' E' P f g"
apply (clarsimp simp add: monadic_rewrite_def)
apply auto
done
lemma monadic_rewrite_is_refl:
"x = y \<Longrightarrow> monadic_rewrite F E \<top> x y"
by (simp add: monadic_rewrite_refl)
lemma monadic_rewrite_refl3:
"[| !!s. P s ==> f s = g s |] ==> monadic_rewrite F E P f g"
by (simp add: monadic_rewrite_def)
lemmas monadic_rewrite_refl2 = monadic_rewrite_refl3[where P=\<top>]
lemma monadic_rewrite_cases:
"\<lbrakk> P \<Longrightarrow> monadic_rewrite F E Q a b; \<not> P \<Longrightarrow> monadic_rewrite F E R a b \<rbrakk>
\<Longrightarrow> monadic_rewrite F E (\<lambda>s. (P \<longrightarrow> Q s) \<and> (\<not> P \<longrightarrow> R s)) a b"
by (cases P, simp_all)
lemma monadic_rewrite_symb_exec_l_known:
"\<lbrakk> \<And>s. \<lbrace>(=) s\<rbrace> m \<lbrace>\<lambda>r. (=) s\<rbrace>; empty_fail m;
monadic_rewrite True False Q (x rv) y; \<lbrace>P\<rbrace> m \<lbrace>\<lambda>rv' s. rv' = rv \<and> Q s\<rbrace> \<rbrakk>
\<Longrightarrow> monadic_rewrite True False P (m >>= x) y"
apply (erule(1) monadic_rewrite_symb_exec_l)
apply (rule_tac P="rva = rv" in monadic_rewrite_gen_asm)
apply simp
apply (erule hoare_strengthen_post)
apply simp
done
lemma monadic_rewrite_gets_the_known_v:
"monadic_rewrite F E (\<lambda>s. f s = Some v)
(gets_the f) (return v)"
by (simp add: monadic_rewrite_def gets_the_def
exec_gets assert_opt_def)
lemma monadic_rewrite_gets_the_walk:
"\<lbrakk> \<And>x. monadic_rewrite True False (P x) (g x) (gets_the pf >>= g' x);
\<And>Q. \<lbrace>\<lambda>s. Q (pf s)\<rbrace> f \<lbrace>\<lambda>rv s. Q (pf s)\<rbrace>; \<lbrace>R\<rbrace> f \<lbrace>P\<rbrace>; empty_fail f \<rbrakk>
\<Longrightarrow> monadic_rewrite True False R
(f >>= g)
(do v \<leftarrow> gets_the pf; x \<leftarrow> f; g' x v od)"
apply (rule monadic_rewrite_imp)
apply (rule monadic_rewrite_trans)
apply (erule(1) monadic_rewrite_bind_tail)
apply (simp add: gets_the_def bind_assoc)
apply (rule monadic_rewrite_symb_exec_r, wp+)
apply (rule monadic_rewrite_trans)
apply (rule monadic_rewrite_bind_tail)
apply (rule_tac rv=rv in monadic_rewrite_symb_exec_l_known,
(wp empty_fail_gets)+)
apply (rule monadic_rewrite_refl)
apply wp
apply assumption
apply (rule_tac P="rv = None" in monadic_rewrite_cases[where Q=\<top>])
apply (simp add: assert_opt_def)
apply (clarsimp simp: monadic_rewrite_def fail_def snd_bind)
apply (rule ccontr, drule(1) empty_failD2)
apply clarsimp
apply (simp add: assert_opt_def case_option_If2)
apply (rule monadic_rewrite_refl)
apply wp
apply simp
done
lemma monadic_rewrite_alternatives:
"\<lbrakk> monadic_rewrite E F P a c; monadic_rewrite E F Q b d \<rbrakk>
\<Longrightarrow> monadic_rewrite E F (P and Q) (a \<sqinter> b) (c \<sqinter> d)"
by (auto simp: monadic_rewrite_def alternative_def)
lemma monadic_rewrite_weaken2:
"monadic_rewrite F E P f g
\<Longrightarrow> monadic_rewrite F' E' ((\<lambda>_. (F \<longrightarrow> F') \<and> (E' \<longrightarrow> E)) and P) f g"
apply (rule monadic_rewrite_gen_asm)
apply (rule monadic_rewrite_weaken[where F=F and E=E])
apply auto
done
lemma monadic_rewrite_case_sum:
"\<lbrakk> \<And>v. x = Inl v \<Longrightarrow> monadic_rewrite F E (P v) (a v) (c v);
\<And>v. x = Inr v \<Longrightarrow> monadic_rewrite F E (Q v) (b v) (d v) \<rbrakk>
\<Longrightarrow> monadic_rewrite F E (\<lambda>s. (\<not> isRight x \<longrightarrow> P (theLeft x) s) \<and> (isRight x \<longrightarrow> Q (theRight x) s))
(case_sum a b x) (case_sum c d x)"
by (cases x, simp_all add: isRight_def)
lemma monadic_rewrite_add_gets:
"monadic_rewrite F E \<top> m (gets f >>= (\<lambda>_. m))"
by (simp add: monadic_rewrite_def exec_gets)
lemma monadic_rewrite_add_assert:
"monadic_rewrite F E (\<lambda>s. P) m (assert P >>= (\<lambda>_. m))"
by (simp add: monadic_rewrite_def)
lemma monadic_rewrite_gets_known:
"monadic_rewrite F E (\<lambda>s. f s = rv) (gets f >>= m) (m rv)"
by (simp add: monadic_rewrite_def exec_gets)
lemma monadic_rewrite_name_pre:
"\<lbrakk> \<And>s. P s \<Longrightarrow> monadic_rewrite F E ((=) s) f g \<rbrakk>
\<Longrightarrow> monadic_rewrite F E P f g"
by (auto simp add: monadic_rewrite_def)
lemma monadic_rewrite_named_bindE:
"\<lbrakk> monadic_rewrite F E ((=) s) f f';
\<And>rv s'. (Inr rv, s') \<in> fst (f' s)
\<Longrightarrow> monadic_rewrite F E ((=) s') (g rv) (g' rv) \<rbrakk>
\<Longrightarrow> monadic_rewrite F E ((=) s) (f >>=E (\<lambda>rv. g rv)) (f' >>=E g')"
apply (rule monadic_rewrite_imp)
apply (erule_tac R="(=) s" and Q="\<lambda>rv s'. (Inr rv, s') \<in> fst (f' s)" in monadic_rewrite_bindE)
apply (rule monadic_rewrite_name_pre)
apply clarsimp
apply (clarsimp simp add: validE_R_def validE_def valid_def
split: sum.split)
apply simp
done
lemmas monadic_rewrite_named_if
= monadic_rewrite_if[where Q="(=) s" and R="(=) s", simplified] for s
lemma monadic_rewrite_if_lhs:
"\<lbrakk> P \<Longrightarrow> monadic_rewrite F E Q b a; \<not> P \<Longrightarrow> monadic_rewrite F E R c a \<rbrakk>
\<Longrightarrow> monadic_rewrite F E (\<lambda>s. (P \<longrightarrow> Q s) \<and> (\<not> P \<longrightarrow> R s))
(If P b c) a"
by (cases P, simp_all)
lemma monadic_rewrite_to_eq:
"monadic_rewrite False True \<top> f g ==> f = g"
by (simp add: monadic_rewrite_def fun_eq_iff)
lemma corres_underlyingI:
assumes rv: "\<And>s t rv' t'. \<lbrakk>(s, t) \<in> R; P s; P' t; (rv', t') \<in> fst (c t)\<rbrakk> \<Longrightarrow> \<exists>(rv, s') \<in> fst (a s). (s', t') \<in> R \<and> r rv rv'"
and nf: "\<And>s t. \<lbrakk>(s, t) \<in> R; P s; P' t; nf'\<rbrakk> \<Longrightarrow> \<not> snd (c t)"
shows "corres_underlying R nf nf' r P P' a c"
unfolding corres_underlying_def using rv nf by (auto simp: split_def)
lemma corres_underlyingE:
assumes cul: "corres_underlying R nf nf' r P P' a c"
and xin: "(s, t) \<in> R" "P s" "P' t" "(rv', t') \<in> fst (c t)"
and rl: "\<And>s' rv. \<lbrakk>nf' \<longrightarrow> \<not> snd (c t); (rv, s') \<in> fst (a s); (s', t') \<in> R; r rv rv'\<rbrakk> \<Longrightarrow> Q"
and nf: "nf \<longrightarrow> \<not> snd (a s)"
shows "Q"
using cul xin nf
unfolding corres_underlying_def by (fastforce simp: split_def intro: rl)
(* Above here is generic *)
lemma monadic_rewrite_corres:
assumes cu: "corres_underlying R False nf' r P P' a' c"
and me: "monadic_rewrite False True Q a a'"
shows "corres_underlying R False nf' r (P and Q) P' a c"
proof (rule corres_underlyingI)
fix s t rv' t'
assume st: "(s, t) \<in> R" and pq: "(P and Q) s" and pt: "P' t" and ct: "(rv', t') \<in> fst (c t)"
from pq have Ps: "P s" and Qs: "Q s" by simp_all
from cu st Ps pt ct obtain s' rv where
as': "(rv, s') \<in> fst (a' s)" and rest: "nf' \<longrightarrow> \<not> snd (c t)" "(s', t') \<in> R" "r rv rv'"
by (fastforce elim: corres_underlyingE)
from me st Qs as' have as: "(rv, s') \<in> fst (a s)"
by (clarsimp simp: monadic_rewrite_def)
with rest show "\<exists>(rv, s')\<in>fst (a s). (s', t') \<in> R \<and> r rv rv'" by auto
next
fix s t
assume "(s, t) \<in> R" "(P and Q) s" "P' t" "nf'"
thus "\<not> snd (c t)" using cu
by (fastforce simp: corres_underlying_def split_def)
qed
lemma monadic_rewrite_refine_valid:
"monadic_rewrite F E P f g
\<Longrightarrow> \<lbrace>P'\<rbrace> f \<lbrace>Q\<rbrace>
\<Longrightarrow> F \<longrightarrow> no_fail P'' f
\<Longrightarrow> \<lbrace>P and P' and P''\<rbrace> g \<lbrace>Q\<rbrace>"
apply (clarsimp simp: monadic_rewrite_def valid_def no_fail_def imp_conjL)
apply (drule spec, drule(1) mp)+
apply (clarsimp simp: Ball_def)
apply auto
done
lemma monadic_rewrite_refine_validE_R:
"monadic_rewrite F E P f g
\<Longrightarrow> \<lbrace>P'\<rbrace> f \<lbrace>Q\<rbrace>, -
\<Longrightarrow> F \<longrightarrow> no_fail P'' f
\<Longrightarrow> \<lbrace>P and P' and P''\<rbrace> g \<lbrace>Q\<rbrace>, -"
by (simp add: validE_R_def validE_def monadic_rewrite_refine_valid)
lemma wpc_helper_monadic_rewrite:
"monadic_rewrite F E Q' m m'
\<Longrightarrow> wpc_helper (P, P') (Q, {s. Q' s}) (monadic_rewrite F E (\<lambda>s. s \<in> P') m m')"
apply (clarsimp simp: wpc_helper_def)
apply (erule monadic_rewrite_imp)
apply auto
done
lemma monadic_rewrite_trans_dup:
"\<lbrakk> monadic_rewrite F E P f g; monadic_rewrite F E P g h \<rbrakk>
\<Longrightarrow> monadic_rewrite F E P f h"
by (auto simp add: monadic_rewrite_def)
lemmas monadic_rewrite_bind_alt
= monadic_rewrite_trans[OF monadic_rewrite_bind_tail monadic_rewrite_bind_head, rotated -1]
wpc_setup "\<lambda>m. monadic_rewrite F E Q' m m'" wpc_helper_monadic_rewrite
wpc_setup "\<lambda>m. monadic_rewrite F E Q' (m >>= c) m'" wpc_helper_monadic_rewrite
end