-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
334 lines (317 loc) · 10.4 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
# import torch.nn as nn
# import math
# import torch.utils.model_zoo as model_zoo
#
#
# __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
# 'resnet152']
#
#
# model_urls = {
# 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
# 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
# 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
# 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
# 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
# }
#
#
# def conv3x3(in_planes, out_planes, stride=1):
# "3x3 convolution with padding"
# return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
# padding=1, bias=False)
#
#
# class BasicBlock(nn.Module):
# expansion = 1
#
# def __init__(self, inplanes, planes, stride=1, downsample=None):
# super(BasicBlock, self).__init__()
# self.conv1 = conv3x3(inplanes, planes, stride)
# self.bn1 = nn.BatchNorm2d(planes)
# self.relu = nn.ReLU(inplace=True)
# self.conv2 = conv3x3(planes, planes)
# self.bn2 = nn.BatchNorm2d(planes)
# self.downsample = downsample
# self.stride = stride
#
# def forward(self, x):
# residual = x
#
# out = self.conv1(x)
# out = self.bn1(out)
# out = self.relu(out)
#
# out = self.conv2(out)
# out = self.bn2(out)
#
# if self.downsample is not None:
# residual = self.downsample(x)
#
# out += residual
# out = self.relu(out)
#
# return out
#
#
# class Bottleneck(nn.Module):
# expansion = 4
#
# def __init__(self, inplanes, planes, stride=1, downsample=None):
# super(Bottleneck, self).__init__()
# self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
# self.bn1 = nn.BatchNorm2d(planes)
# self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
# padding=1, bias=False)
# self.bn2 = nn.BatchNorm2d(planes)
# self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
# self.bn3 = nn.BatchNorm2d(planes * 4)
# self.relu = nn.ReLU(inplace=True)
# self.downsample = downsample
# self.stride = stride
#
# def forward(self, x):
# residual = x
#
# out = self.conv1(x)
# out = self.bn1(out)
# out = self.relu(out)
#
# out = self.conv2(out)
# out = self.bn2(out)
# out = self.relu(out)
#
# out = self.conv3(out)
# out = self.bn3(out)
#
# if self.downsample is not None:
# residual = self.downsample(x)
#
# out += residual
# out = self.relu(out)
#
# return out
#
#
# class ResNet(nn.Module):
#
# def __init__(self, block, layers, num_classes=1000):
# self.inplanes = 64
# super(ResNet, self).__init__()
# self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
# bias=False)
# self.bn1 = nn.BatchNorm2d(64)
# self.relu = nn.ReLU(inplace=True)
# self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# self.layer1 = self._make_layer(block, 64, layers[0])
# self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
# self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
# self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
# self.avgpool = nn.AvgPool2d(7)
# self.fc = nn.Linear(512 * block.expansion, num_classes)
#
# for m in self.modules():
# if isinstance(m, nn.Conv2d):
# n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
# m.weight.data.normal_(0, math.sqrt(2. / n))
# elif isinstance(m, nn.BatchNorm2d):
# m.weight.data.fill_(1)
# m.bias.data.zero_()
#
# def _make_layer(self, block, planes, blocks, stride=1):
# downsample = None
# if stride != 1 or self.inplanes != planes * block.expansion:
# downsample = nn.Sequential(
# nn.Conv2d(self.inplanes, planes * block.expansion,
# kernel_size=1, stride=stride, bias=False),
# nn.BatchNorm2d(planes * block.expansion),
# )
#
# layers = []
# layers.append(block(self.inplanes, planes, stride, downsample))
# self.inplanes = planes * block.expansion
# for i in range(1, blocks):
# layers.append(block(self.inplanes, planes))
#
# return nn.Sequential(*layers)
#
# def forward(self, x):
# x = self.conv1(x)
# x = self.bn1(x)
# x = self.relu(x)
# x = self.maxpool(x)
#
# x = self.layer1(x)
# x = self.layer2(x)
# x = self.layer3(x)
# x = self.layer4(x)
#
# x = self.avgpool(x)
# x = x.view(x.size(0), -1)
# x = self.fc(x)
#
# return x
#
#
# def resnet18(pretrained=False, **kwargs):
# """Constructs a ResNet-18 model.
#
# Args:
# pretrained (bool): If True, returns a model pre-trained on ImageNet
# """
# model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
# if pretrained:
# model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
# return model
#
#
# def resnet34(pretrained=False, **kwargs):
# """Constructs a ResNet-34 model.
#
# Args:
# pretrained (bool): If True, returns a model pre-trained on ImageNet
# """
# model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
# if pretrained:
# model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
# return model
#
#
# def resnet50(pretrained=False, **kwargs):
# """Constructs a ResNet-50 model.
#
# Args:
# pretrained (bool): If True, returns a model pre-trained on ImageNet
# """
# model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
# if pretrained:
# model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
# return model
#
#
# def resnet101(pretrained=False, **kwargs):
# """Constructs a ResNet-101 model.
#
# Args:
# pretrained (bool): If True, returns a model pre-trained on ImageNet
# """
# model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
# if pretrained:
# model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
# return model
#
#
# def resnet152(pretrained=False, **kwargs):
# """Constructs a ResNet-152 model.
#
# Args:
# pretrained (bool): If True, returns a model pre-trained on ImageNet
# """
# model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
# if pretrained:
# model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
# return model
# import torch
# import torchvision
# model = torchvision.models.resnet50(pretrained=True)
# model2=torch.load('./resnet50-19c8e357.pth')
# print(model2)
'''
import torch
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable
# Hyper Parameters
num_epochs = 5
batch_size = 100
learning_rate = 0.001
# MNIST Dataset
train_dataset = dsets.MNIST(root='./data/',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = dsets.MNIST(root='./data/',
train=False,
transform=transforms.ToTensor())
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
# CNN Model (2 conv layer)
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=5, padding=2),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.MaxPool2d(2))
self.layer2 = nn.Sequential(
nn.Conv2d(16, 32, kernel_size=5, padding=2),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(2))
self.fc = nn.Linear(7 * 7 * 32, 10)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
cnn = CNN()
# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(cnn.parameters(), lr=learning_rate)
# Train the Model
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = Variable(images)
labels = Variable(labels)
# Forward + Backward + Optimize
optimizer.zero_grad()
outputs = cnn(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i + 1) % 100 == 0:
print ('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f'
% (epoch + 1, num_epochs, i + 1, len(train_dataset) // batch_size, loss.data[0]))
# Test the Model
cnn.eval() # Change model to 'eval' mode (BN uses moving mean/var).
correct = 0
total = 0
for images, labels in test_loader:
images = Variable(images)
outputs = cnn(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
# Save the Trained Model
torch.save(cnn.state_dict(), 'cnn.pkl')
'''
'''
import torch
model = torch.load('cnn.pkl')
print(model)
'''
import os
label="/home/ying/data/google_streetview_train_test1/label.txt"
root="/home/ying/data/google_streetview_train_test1"
c = 0
imgs = []
class_names = ['regression']
for line in label: # label is a list
cls = line.split() # cls is a list
fn = cls.pop(0)
if os.path.isfile(os.path.join(root, fn)):
imgs.append((fn, tuple([float(v) for v in cls[:len(cls) - 2]])))
# access the last label
# images is the list,and the content is the tuple, every image corresponds to a label
# despite the label's dimension
# we can use the append way to append the element for list
c = c + 1