-
Notifications
You must be signed in to change notification settings - Fork 48
/
cli_demo.py
225 lines (192 loc) · 7.82 KB
/
cli_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# Copyright (c) the MindChat Team and Alibaba Cloud.
#
# This code is based on QwenLM/Qwen/blob/main/cli_demo.py
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""A simple command-line interactive chat demo."""
import argparse
import os
import platform
import shutil
from copy import deepcopy
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
from transformers.trainer_utils import set_seed
DEFAULT_CKPT_PATH = 'X-D-Lab/MindChat-Qwen2-4B'
_WELCOME_MSG = '''\
Welcome to use MindChat model, type text to start chat, type :h to show command help.
'''
_HELP_MSG = '''\
Commands:
:help / :h Show this help message 显示帮助信息
:exit / :quit / :q Exit the demo 退出Demo
:clear / :cl Clear screen 清屏
:clear-his / :clh Clear history 清除对话历史
:history / :his Show history 显示对话历史
:seed Show current random seed 显示当前随机种子
:seed <N> Set random seed to <N> 设置随机种子
:conf Show current generation config 显示生成配置
:conf <key>=<value> Change generation config 修改生成配置
:reset-conf Reset generation config 重置生成配置
'''
def _load_model_tokenizer(args):
tokenizer = AutoTokenizer.from_pretrained(
args.checkpoint_path, trust_remote_code=True, resume_download=True,
)
if args.cpu_only:
device_map = "cpu"
else:
device_map = "auto"
model = AutoModelForCausalLM.from_pretrained(
args.checkpoint_path,
device_map=device_map,
resume_download=True,
)
config = GenerationConfig.from_pretrained(
args.checkpoint_path, trust_remote_code=True, resume_download=True,
)
return model, tokenizer, config
def _gc():
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
def _clear_screen():
if platform.system() == "Windows":
os.system("cls")
else:
os.system("clear")
def _print_history(history):
terminal_width = shutil.get_terminal_size()[0]
print(f'History ({len(history)})'.center(terminal_width, '='))
for index, (query, response) in enumerate(history):
print(f'User[{index}]: {query}')
print(f'MindChat[{index}]: {response}')
print('=' * terminal_width)
def _get_input() -> str:
while True:
try:
message = input('User> ').strip()
except UnicodeDecodeError:
print('[ERROR] Encoding error in input')
continue
except KeyboardInterrupt:
exit(1)
if message:
return message
print('[ERROR] Query is empty')
def main():
parser = argparse.ArgumentParser(
description='MindChat command-line interactive chat demo.')
parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH,
help="Checkpoint name or path, default to %(default)r")
parser.add_argument("-s", "--seed", type=int, default=1234, help="Random seed")
parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only")
args = parser.parse_args()
history, response = [], ''
model, tokenizer, config = _load_model_tokenizer(args)
orig_gen_config = deepcopy(model.generation_config)
_clear_screen()
print(_WELCOME_MSG)
seed = args.seed
while True:
query = _get_input()
# Process commands.
if query.startswith(':'):
command_words = query[1:].strip().split()
if not command_words:
command = ''
else:
command = command_words[0]
if command in ['exit', 'quit', 'q']:
break
elif command in ['clear', 'cl']:
_clear_screen()
print(_WELCOME_MSG)
_gc()
continue
elif command in ['clear-history', 'clh']:
print(f'[INFO] All {len(history)} history cleared')
history.clear()
_gc()
continue
elif command in ['help', 'h']:
print(_HELP_MSG)
continue
elif command in ['history', 'his']:
_print_history(history)
continue
elif command in ['seed']:
if len(command_words) == 1:
print(f'[INFO] Current random seed: {seed}')
continue
else:
new_seed_s = command_words[1]
try:
new_seed = int(new_seed_s)
except ValueError:
print(f'[WARNING] Fail to change random seed: {new_seed_s!r} is not a valid number')
else:
print(f'[INFO] Random seed changed to {new_seed}')
seed = new_seed
continue
elif command in ['conf']:
if len(command_words) == 1:
print(model.generation_config)
else:
for key_value_pairs_str in command_words[1:]:
eq_idx = key_value_pairs_str.find('=')
if eq_idx == -1:
print('[WARNING] format: <key>=<value>')
continue
conf_key, conf_value_str = key_value_pairs_str[:eq_idx], key_value_pairs_str[eq_idx + 1:]
try:
conf_value = eval(conf_value_str)
except Exception as e:
print(e)
continue
else:
print(f'[INFO] Change config: model.generation_config.{conf_key} = {conf_value}')
setattr(model.generation_config, conf_key, conf_value)
continue
elif command in ['reset-conf']:
print('[INFO] Reset generation config')
model.generation_config = deepcopy(orig_gen_config)
print(model.generation_config)
continue
else:
# As normal query.
pass
# Run chat.
set_seed(seed)
try:
messages = [{"role": "system", "content": "You are a helpful assistant."}]
for i in history:
messages.append({"role": "user", "content": i[0]})
messages.append({"role": "assistant", "content": i[1]})
messages.append({"role": "user", "content": query})
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
device = torch.device("cuda" if torch.cuda.is_available() and not args.cpu_only else "cpu")
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
_clear_screen()
print(f"\nUser: {query}")
print(f"\nMindChat: {response}")
except KeyboardInterrupt:
print('[WARNING] Generation interrupted')
continue
history.append((query, response))
if __name__ == "__main__":
main()