Skip to content

Latest commit

 

History

History
31 lines (17 loc) · 824 Bytes

README.md

File metadata and controls

31 lines (17 loc) · 824 Bytes

Multi-rater Prism

A pytorch implementation of the paper 'Multi-rater Prism: Learning self-calibrated medical image segmentation from multiple raters' and 'Learning self-calibrated optic disc and cup segmentation from multi-rater annotations' accepted by MICCAI 2022

text

Preparation

The code is run on pytorch1.8.1 + cuda 10.1.

Quick Start

Training:

python train.py -net transunet -exp_name test_train -mod rec

Inference:

python val.py -net transunet -mod rec -exp_name val_seg -weights 'recorded weights'

See cfg.py for more avaliable parameters

Todo list

  • add requirement
  • del debug code
  • function name alignment
  • del redundance
  • release a slim version