You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1. put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
The cache is initialized with a positive capacity.
Follow up:
Could you do both operations in O(1) time complexity?
class LRUCache {
Node head = new Node(0, 0);
Node tail = new Node(0, 0);
int cap;
HashMap<Integer, Node> map;
public LRUCache(int capacity) {
cap = capacity;
map = new HashMap<>(cap);
head.next = tail;
tail.prev = head;
}
public int get(int key) {
int ans = -1;
Node node = map.get(key);
if (node != null) {
ans = node.val;
remove(node);
add(node);
}
return ans;
}
public void put(int key, int value) {
Node node = map.get(key);
if (node != null) {
remove(node);
node.val = value;
add(node);
}else {
if (map.size() == cap) {
Node aban = tail.prev;
remove(aban);
map.remove(aban.key);
}
Node newNode = new Node(key, value);
add(newNode);
map.put(newNode.key, newNode);
}
}
class Node {
public int key;
public int val;
public Node prev;
public Node next;
public Node(int key, int val) {
this.key = key;
this.val = val;
prev = null;
next = null;
}
}
public void add(Node node) {
Node headNext = head.next;
head.next = node;
node.prev = head;
node.next = headNext;
headNext.prev = node;
}
public void remove(Node node) {
Node nodePrev = node.prev;
Node nodeNext = node.next;
node.prev = null;
node.next = null;
nodePrev.next = nodeNext;
nodeNext.prev = nodePrev;
}
}
上述解法是我们自己实现了一个双向链表,利用预先的头节点和尾节点优化了时间复杂度。
我们也可以使用Java的集合LinkedList双向链表,同理:
class LRUCache {
Deque<Integer> list = new LinkedList<>();
int cap;
HashMap<Integer, Integer> map;
public LRUCache(int capacity) {
cap = capacity;
map = new HashMap<>(cap);
}
public int get(int key) {
int ans = -1;
Integer val = map.get(key);
if (val != null) {
ans = val;
list.remove(key);
list.offerFirst(key);
}
return ans;
}
public void put(int key, int value) {
Integer val = map.get(key);
if (val != null) {
map.put(key, value);
list.remove(key);
list.addFirst(key);
}else {
if (list.size() == cap) {
Integer theLastKey = list.pollLast();
map.remove(theLastKey);
}
map.put(key, value);
list.offerFirst(key);
}
}
}
get和put方法同理。removeEldestEntry方法是用来移除最后的键值对的,JDK1.8后文档解释如下:Returns true if this map should remove its eldest entry. This method is invoked by put and putAll after inserting a new entry into the map. It provides the implementor with the opportunity to remove the eldest entry each time a new one is added. This is useful if the map represents a cache: it allows the map to reduce memory consumption by deleting stale entries.
class LRUCache {
int cap;
LinkedHashMap<Integer, Integer> map;
public LRUCache(int capacity) {
cap = capacity;
map = new LinkedHashMap<>() {
@Override
protected boolean removeEldestEntry(Map.Entry<Integer, Integer> eldest) {
return size() > cap;
}
};
}
public int get(int key) {
Integer val = map.get(key);
if (val == null) return -1;
else {
map.remove(key);
map.put(key, val);
return val;
}
}
public void put(int key, int value) {
Integer val = map.get(key);
if (val != null)
map.remove(key);
map.put(key, value);
}
}
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations:
get
andput
.get(key)
- Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.put(key, value)
- Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.The cache is initialized with a positive capacity.
Follow up:
Could you do both operations in O(1) time complexity?
Example:
题目要求我们实现一个LRU cache(Least Recently Used cache),实现基本的get和put功能。
LRU最大的特性就是每次使用过内部一个元素后,要把它的优先级提前。我们可以想到使用线性结构来实现,又因为需要频繁地插入和删除,就需要使用链表结构。因为最好get和put方法都是O(1)时间复杂度,我们可以尝试使用双向链表而不是单向链表(有点类似滑动窗口那道题),因为单向链表查询节点的时间是线性复杂度,而双向链表节点有前驱节点信息。
定义一个双向链表节点类Node作为内部类,实现add和remove方法,时间复杂度都是O(1)。设置一个头节点head和一个尾节点tail,方便我们向链表头部插入和尾部删除。并且因为有关键值对,设置一个HahsMap,HashMap的key对应key,value对应Node,这样把HashMap和双向链表对应起来了。
get方法首先查询HashMap,如果有对应的key值,移除链表节点并插入头部(提高优先级),返回value值。put方法首先调用get方法查询是否存在,如果存在,则修改value值并插入头部;如果不存在key,则先判断有没有达到指定容量,达到则移除尾节点的上一个节点,然后建立新链表节点插入头部,存入哈希表中:
上述解法是我们自己实现了一个双向链表,利用预先的头节点和尾节点优化了时间复杂度。
我们也可以使用Java的集合LinkedList双向链表,同理:
平均运行时间比自己实现的双向链表方法更多。注意: LinkedList的构造需要向上转型Deque,因为使用 remove方法 时会出现混乱。
我们可以不用链表结构。链表结构的作用是实现HashMap无法实现的功能——内部有序,保证增加新元素时在集合头部。所以我们想到Map集合中实现了按插入时间排序的LinkedHashMap,其实第一个解法中的双向链表+HashMap的结构就是LinkedHashMap的底层实现,同样有个预设的before和after节点。
get和put方法同理。removeEldestEntry方法是用来移除最后的键值对的,JDK1.8后文档解释如下:
Returns true if this map should remove its eldest entry. This method is invoked by put and putAll after inserting a new entry into the map. It provides the implementor with the opportunity to remove the eldest entry each time a new one is added. This is useful if the map represents a cache: it allows the map to reduce memory consumption by deleting stale entries.
类似题目:
参考资料:
The text was updated successfully, but these errors were encountered: