We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
类似题目:
首先这道题我一开始想看成深度优先遍历来做,有些想歪了。
这实际上是个有向图求两点最短路径的问题,有一些特殊有向路径,那么这类问题可以用Dijkstra来做。
那么平时的Dijkstra都是在图结构上做的,用堆来模拟。但这里就比较难用堆的思路来写。那么我们回归本质,单纯用距离数组和访问数组来求解。
思路:把起点、终点和特殊路径终点看成图上的点,然后构造距离数组和访问数组,距离数组用Java里的Map<List,Integer>来表示,Key值用List是为了方便hash,单纯用int[]数组是不行的;访问数组的作用是每次遍历距离数组选出未访问的最小距离点,因为距离都是正值,其他点到该点的距离可以肯定是比这个最小值还大的,所以标记访问后下次就不用访问了。每次遍历中如果选不出最小值或者最小值仍未极限值,则说明已经结束返回-1,否则判断是否是终点起点;最后还要记得更新与终点的距离。
Tips: 距离数组表示的是起点到各个点的曼哈顿距离,所以有叠加性;因为曼哈顿距离固定,所以只能在特殊路径上缩短距离,所以记录特殊路径终点;因为是稠密图,所以,点比边少,所以用朴素Dijkstra。
时间复杂度:O(n^2) 空间复杂度:O(n)
class Solution { public int minimumCost(int[] start, int[] target, int[][] specialRoads) { if (start[0] == target[0] && start[1] == target[1]) { return 0; } Set<List<Integer>> v = new HashSet<>(); Map<List<Integer>, Integer> dist = new HashMap<>(); dist.put(Arrays.asList(start[0], start[1]), 0); dist.put(Arrays.asList(target[0], target[1]), Integer.MAX_VALUE); while (true) { List<Integer> cur = null; int min = Integer.MAX_VALUE; for (Map.Entry<List<Integer>, Integer> entry : dist.entrySet()) { if (v.contains(entry.getKey())) { continue; } if (entry.getValue() < min) { min = entry.getValue(); cur = entry.getKey(); } } if (cur == null) { return -1; } if (cur.get(0) == target[0] && cur.get(1) == target[1]) { return min; } v.add(cur); // target dist.put(Arrays.asList(target[0], target[1]), Math.min(dist.get(Arrays.asList(target[0], target[1])), min + Math.abs(cur.get(0) - target[0]) + Math.abs(cur.get(1) - target[1]))); for (int[] road : specialRoads) { int nx = road[2], ny = road[3]; if (v.contains(Arrays.asList(nx, ny))) { continue; } int d = Math.min(Math.abs(cur.get(0) - nx) + Math.abs(cur.get(1) - ny), road[4] + Math.abs(cur.get(0) - road[0]) + Math.abs(cur.get(1) - road[1])) + min; dist.put(Arrays.asList(nx, ny), Math.min(dist.getOrDefault(Arrays.asList(nx, ny), Integer.MAX_VALUE), d)); } } } }
The text was updated successfully, but these errors were encountered:
No branches or pull requests
2662. Minimum Cost of a Path With Special Roads
类似题目:
首先这道题我一开始想看成深度优先遍历来做,有些想歪了。
这实际上是个有向图求两点最短路径的问题,有一些特殊有向路径,那么这类问题可以用Dijkstra来做。
那么平时的Dijkstra都是在图结构上做的,用堆来模拟。但这里就比较难用堆的思路来写。那么我们回归本质,单纯用距离数组和访问数组来求解。
思路:把起点、终点和特殊路径终点看成图上的点,然后构造距离数组和访问数组,距离数组用Java里的Map<List,Integer>来表示,Key值用List是为了方便hash,单纯用int[]数组是不行的;访问数组的作用是每次遍历距离数组选出未访问的最小距离点,因为距离都是正值,其他点到该点的距离可以肯定是比这个最小值还大的,所以标记访问后下次就不用访问了。每次遍历中如果选不出最小值或者最小值仍未极限值,则说明已经结束返回-1,否则判断是否是终点起点;最后还要记得更新与终点的距离。
Tips: 距离数组表示的是起点到各个点的曼哈顿距离,所以有叠加性;因为曼哈顿距离固定,所以只能在特殊路径上缩短距离,所以记录特殊路径终点;因为是稠密图,所以,点比边少,所以用朴素Dijkstra。
时间复杂度:O(n^2)
空间复杂度:O(n)
The text was updated successfully, but these errors were encountered: