We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4], Output: 6 Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
可以和#20对比。
这属于线性DP问题,搞清楚dp[i]的含义是以第i个元素为结尾的子数组的最大和,状态转移函数是:
dp[i] = (nums[i] > dp[i - 1]) ? Math.max(nums[i], dp[i - 1] + nums[i]) : dp[i - 1] + nums[i];
如果当前元素比dp[i - 1]大,那么根据比较判断决定是否将旧的子数组抛弃,或者说是否把该元素命名为新的子数组的头;否则继续将该元素容纳进子数组中。 最后要获得结果,需要遍历整个数组。
class Solution { public int maxSubArray(int[] nums) { int n = nums.length; if (n <= 0) { return 0; } int maxSum = nums[0]; int[] dp = new int[n]; dp[0] = nums[0]; for (int i = 1; i < n; ++i) { dp[i] = Math.max(nums[i], dp[i - 1] + nums[i]); maxSum = Math.max(maxSum, dp[i]); } return maxSum; } }
时间和空间复杂度为O(n)。 当然可以进一步优化,使空间复杂度优化成常数级别。
class Solution { public int maxSubArray(int[] nums) { int n = nums.length; if (n <= 0) { return 0; } int preSum = 0, maxSum = Integer.MIN_VALUE; for (int num : nums) { preSum = (preSum < num) ? Math.max(preSum + num, num) : preSum + num; maxSum = Math.max(preSum, maxSum); } return maxSum; } }
class Solution { public int maxSubArray(int[] nums) { int preSum = 0, min = Integer.MAX_VALUE, res = Integer.MIN_VALUE; for (int num : nums) { preSum += num; res = Math.max(res, preSum - Math.min(0, min)); min = Math.min(min, preSum); } return res; } }
还有用分治法 Divide and Conquer Approach,这个解法的时间复杂度是 O(nlgn)。将数组分为左右子数组,从中间元素开始向左或向右分别遍历左子数组或右子数组。取得最大值。
class Solution { public int maxSubArray(int[] nums) { if (nums.length == 0) return 0; return helper(nums, 0, nums.length - 1); } public int helper(int[] nums, int left, int right) { if (left >= right) return nums[left]; int mid = left + (right - left) / 2; int lmax = helper(nums, left, mid - 1); int rmax = helper(nums, mid + 1, right); int mmax = nums[mid], t = mmax; for (int i = mid - 1; i >= left; --i) { t += nums[i]; mmax = Math.max(mmax, t); } t = mmax; for (int i = mid + 1; i <= right; ++i) { t += nums[i]; mmax = Math.max(mmax, t); } return Math.max(mmax, Math.max(lmax, rmax)); } }
三种解题思路:
类似题目:
参考资料:
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
可以和#20对比。
这属于线性DP问题,搞清楚dp[i]的含义是以第i个元素为结尾的子数组的最大和,状态转移函数是:
如果当前元素比dp[i - 1]大,那么根据比较判断决定是否将旧的子数组抛弃,或者说是否把该元素命名为新的子数组的头;否则继续将该元素容纳进子数组中。
最后要获得结果,需要遍历整个数组。
时间和空间复杂度为O(n)。
当然可以进一步优化,使空间复杂度优化成常数级别。
还有用分治法 Divide and Conquer Approach,这个解法的时间复杂度是 O(nlgn)。将数组分为左右子数组,从中间元素开始向左或向右分别遍历左子数组或右子数组。取得最大值。
三种解题思路:
类似题目:
参考资料:
The text was updated successfully, but these errors were encountered: