We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.
(i.e., [0,1,2,4,5,6,7] might become [4,5,6,7,0,1,2]).
You are given a target value to search. If found in the array return its index, otherwise return -1.
You may assume no duplicate exists in the array.
Your algorithm's runtime complexity must be in the order of O(log n).
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0 Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3 Output: -1
首先理清下思路,题目要求时间复杂度为O(log n),那么最容易想到的就是二分查找了。二分查找法是针对排序好的数组,找到中间值,如果它小于目标值,则在右半边继续查找,否则在左半边。而这道题的情景是一个有序数组旋转而成,数组无序,所以我们无法确定继续往左半边查找还是往右半边查找,那么关键是如何判断左半边还是右半边有序呢,如何改进二分查找呢?
我们没有思路的话,就尝试着举几个例子找规律(找链表中间节点也是举例子得出的规律)。比如数组[0, 1, 2, ..., 7],会有7种旋转后的情况。我们配合二分查找的步骤观察,可以发现一个规律:若中间值小于最右边的数值,那么数组右半边排好序;反之数组左半边排好序。然后我们根据目标数值和中间数值的比对,可以选择保留哪一边,继续二分查找。
class Solution { public int search(int[] nums, int target) { int left = 0, right = nums.length - 1; while (left <= right) { int mid = left + (right - left) / 2; if (nums[mid] == target) return mid; if (nums[mid] < nums[right]) { if (nums[mid] < target && nums[right] >= target) left = mid + 1; else right = mid - 1; } else { if (nums[left] <= target && nums[mid] > target) right = mid - 1; else left = mid + 1; } } return -1; } }
对于以上解法,有个小问题:为什么是中间值跟最右边的值对比?而不是最左边呢?最左边数值对比一样满足以上规律啊?
在二分搜索中,nums[mid] 和 nums[left] 还有可能相等的, 当数组中只有两个数字的时候,比如 [3, 1],那该去取那一边呢? 由于只有两个数字且 nums[mid] 不等于 target,target 只有可能在右半边出现。 最好的方法就是让其无法进入左半段,就需要左半段是有序的, 而且由于一定无法同时满足 nums[left] <= target && nums[mid] > target, 因为 nums[left] 和 nums[mid] 相等, 同一个数怎么可能同时大于等于 target,又小于 target。 由于这个条件不满足,则直接进入右半段继续搜索即可, 所以等于的情况要加到 nums[mid] > nums[left] 的情况中,变成大于等于。 参见代码如下: class Solution { public: int search(vector<int>& nums, int target) { int left = 0, right = nums.size() - 1; while (left <= right) { int mid = left + (right - left) / 2; if (nums[mid] == target) return mid; if (nums[mid] >= nums[left]) { if (nums[left] <= target && nums[mid] > target) right = mid - 1; else left = mid + 1; } else { if (nums[mid] < target && nums[right] >= target) left = mid + 1; else right = mid - 1; } } return -1; } };
参考资料:
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.
(i.e., [0,1,2,4,5,6,7] might become [4,5,6,7,0,1,2]).
You are given a target value to search. If found in the array return its index, otherwise return -1.
You may assume no duplicate exists in the array.
Your algorithm's runtime complexity must be in the order of O(log n).
Example 1:
Example 2:
首先理清下思路,题目要求时间复杂度为O(log n),那么最容易想到的就是二分查找了。二分查找法是针对排序好的数组,找到中间值,如果它小于目标值,则在右半边继续查找,否则在左半边。而这道题的情景是一个有序数组旋转而成,数组无序,所以我们无法确定继续往左半边查找还是往右半边查找,那么关键是如何判断左半边还是右半边有序呢,如何改进二分查找呢?
我们没有思路的话,就尝试着举几个例子找规律(找链表中间节点也是举例子得出的规律)。比如数组[0, 1, 2, ..., 7],会有7种旋转后的情况。我们配合二分查找的步骤观察,可以发现一个规律:若中间值小于最右边的数值,那么数组右半边排好序;反之数组左半边排好序。然后我们根据目标数值和中间数值的比对,可以选择保留哪一边,继续二分查找。
对于以上解法,有个小问题:为什么是中间值跟最右边的值对比?而不是最左边呢?最左边数值对比一样满足以上规律啊?
参考资料:
The text was updated successfully, but these errors were encountered: