Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Leetcode 2262. Total Appeal of A String #108

Open
Woodyiiiiiii opened this issue May 1, 2022 · 0 comments
Open

Leetcode 2262. Total Appeal of A String #108

Woodyiiiiiii opened this issue May 1, 2022 · 0 comments

Comments

@Woodyiiiiiii
Copy link
Owner

Woodyiiiiiii commented May 1, 2022

这道题是第291场周赛的最后一题,题目中字符串s的长度最大为10^5级别,显然O(n^2)级别的时间算法度是不允许的,只能尽量优化算法。

尝试O(nlgn)级别的优化可以吗?思考后发现并不可行, 不能用二分之类的方法。那就考虑用O(n)级别的算法,也就是动态规划,寻找每次迭代的关系。

思考后发现,index + 1为结尾的字符串与index结尾的字符串的递进关系是是什么?或者说加入这个字符对index结尾的字符串增加了多少"appeal"?从字符出现位置出发,可以发现,index+1结尾的字符串可以与以该字符最近一次结尾的子字符串(假设为s1)作对比,因为该字符已经出现过一次,换句话说,加入该字符对s1的appeal无影响。故只要对比两者增加的部分。

以字符串"aabab"举例,"aabab"对于"aaba"增加了'b'字符,即增加了"b"、"ab"、"bab"、"abab"、"aabab"这五个子字符串, 我们可以发现对于包含了上一个'b'字符的子字符串,appeal是与"aaba"字符串产生的appeal是相同的,即"abab"中,appeal个数可以看成是"aba";所以只看s[j+1...i]、s[j+2...i]到s[i-1...i]这些不包括上一个字符的子字符串多的appeal(假设j是最近一次字符出现位置),增加的appeal数量为i-j+1。

说到底也就是研究规律。得到答案后倒推肯定简单,做题时自己发现规律肯定难。

代码如下:

class Solution {
    public long appealSum(String s) {
        
        long res = 0;
        int[] prev = new int[26];
        long cur = 0;
        
        for (int i = 0; i < s.length(); ++i) {
            cur += i + 1 - prev[s.charAt(i) - 'a'];
            prev[s.charAt(i) - 'a'] = i + 1;
            res += cur;
        }
        
        return res;
        
    }
}

参考中文题解:

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant