forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexport_model.py
57 lines (47 loc) Β· 2.25 KB
/
export_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import paddle
from model import SimCSE
from paddlenlp.transformers import AutoModel, AutoTokenizer
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--params_path", type=str, required=True, default='./checkpoint/model_900/model_state.pdparams', help="The path to model parameters to be loaded.")
parser.add_argument("--output_path", type=str, default='./output', help="The path of model parameter in static graph to be saved.")
parser.add_argument("--model_name_or_path", default='rocketqa-zh-base-query-encoder', type=str, help='The pretrained model used for training')
args = parser.parse_args()
# yapf: enable
if __name__ == "__main__":
# If you want to use ernie1.0 model, plesace uncomment the following code
output_emb_size = 256
pretrained_model = AutoModel.from_pretrained(args.model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
model = SimCSE(pretrained_model, output_emb_size=output_emb_size)
if args.params_path and os.path.isfile(args.params_path):
state_dict = paddle.load(args.params_path)
model.set_dict(state_dict)
print("Loaded parameters from %s" % args.params_path)
model.eval()
# Convert to static graph with specific input description
model = paddle.jit.to_static(
model,
input_spec=[
paddle.static.InputSpec(shape=[None, None], dtype="int64"), # input_ids
paddle.static.InputSpec(shape=[None, None], dtype="int64"), # segment_ids
],
)
# Save in static graph model.
save_path = os.path.join(args.output_path, "inference")
paddle.jit.save(model, save_path)