-
Notifications
You must be signed in to change notification settings - Fork 0
/
detection_comparing.py
57 lines (57 loc) · 2.21 KB
/
detection_comparing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import cv2
import numpy as np
import math
cap = cv2.VideoCapture(0)
while(cap.isOpened()):
ret, img = cap.read()
# Draw a rectangle and obtain the img
cv2.rectangle(img,(400,400),(100,100),(0,255,0),0)
crop_img = img[100:400, 100:400]
# Convert to grayscale
grey = cv2.cvtColor(crop_img, cv2.COLOR_BGR2GRAY)
value = (35, 35)
blurred = cv2.GaussianBlur(grey, value, 0)
_, thresh1 = cv2.threshold(blurred, 127, 255,
cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
contours, hierarchy = cv2.findContours(thresh1.copy(),cv2.RETR_TREE, \
cv2.CHAIN_APPROX_NONE)
max_area = -1
for i in range(len(contours)):
cnt=contours[i]
area = cv2.contourArea(cnt)
if(area>max_area):
max_area=area
ci=i
cnt=contours[ci]
x,y,w,h = cv2.boundingRect(cnt)
cv2.rectangle(crop_img,(x,y),(x+w,y+h),(0,0,255),0)
hull = cv2.convexHull(cnt)
drawing = np.zeros(crop_img.shape,np.uint8)
cv2.drawContours(drawing,[cnt],0,(0,255,0),0)
cv2.drawContours(drawing,[hull],0,(0,0,255),0)
#drawing2=drawing.copy()
hull = cv2.convexHull(cnt,returnPoints = False)
defects = cv2.convexityDefects(cnt,hull)
count_defects = 0
cv2.drawContours(thresh1, contours, -1, (0,255,0), 3)
for i in range(defects.shape[0]):
s,e,f,d = defects[i,0]
start = tuple(cnt[s][0])
end = tuple(cnt[e][0])
far = tuple(cnt[f][0])
a = math.sqrt((end[0] - start[0])**2 + (end[1] - start[1])**2)
b = math.sqrt((far[0] - start[0])**2 + (far[1] - start[1])**2)
c = math.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2)
angle = math.acos((b**2 + c**2 - a**2)/(2*b*c)) * 180 / math.pi
if angle <= 90:
count_defects += 1
cv2.circle(drawing,far,1,[0,0,255],2)
cv2.line(drawing,start,end,[0,0,255],0)
cv2.imshow('Original--WENYU ZHANG',crop_img)
#cv2.imshow('Convex Hull--WENYU ZHANG',drawing)
cv2.imshow('Complex Background--WENYU ZHANG',drawing)
#all_img = np.hstack((drawing, drawing2))
#cv2.imshow('Hand Object Detection in Different Lightening Condition--WENYU ZHANG', all_img)
k = cv2.waitKey(10)
if k == 27:
break