Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Rf parallel #20

Merged
merged 20 commits into from
May 19, 2021
Merged
Show file tree
Hide file tree
Changes from 19 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 26 additions & 17 deletions IgOmeProfiling_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,15 +10,16 @@
sys.path.insert(0, src_dir)

from auxiliaries.pipeline_auxiliaries import *


def run_pipeline(fastq_path, barcode2samplename_path, samplename2biologicalcondition_path, analysis_dir, logs_dir,
left_construct, right_construct, max_mismatches_allowed, min_sequencing_quality, minimal_length_required, gz, rpm,
max_msas_per_sample, max_msas_per_bc,
max_number_of_cluster_members_per_sample, max_number_of_cluster_members_per_bc,
max_msas_per_sample, max_msas_per_bc, max_number_of_cluster_members_per_sample, max_number_of_cluster_members_per_bc,
allowed_gap_frequency, threshold, word_length, discard, concurrent_cutoffs, meme_split_size, use_mapitope, aln_cutoff,
pcc_cutoff, skip_sample_merge_meme, minimal_number_of_columns_required_create_meme, prefix_length_in_clstr, number_of_random_pssms,
pcc_cutoff, skip_sample_merge_meme, minimal_number_of_columns_required_create_meme, prefix_length_in_clstr,
stop_before_random_forest, number_of_random_pssms, number_parallel_random_forest, min_value_error_random_forest,
rank_method, tfidf_method, tfidf_factor, shuffles, shuffles_percent, shuffles_digits,
num_of_random_configurations_to_sample, cv_num_of_splits, seed_random_forest,
num_of_random_configurations_to_sample, cv_num_of_splits, seed_random_forest, random_forest_seed_configurations,
run_summary_path, error_path, queue, verbose, argv):

os.makedirs(os.path.split(run_summary_path)[0], exist_ok=True)
Expand Down Expand Up @@ -88,13 +89,17 @@ def run_pipeline(fastq_path, barcode2samplename_path, samplename2biologicalcondi
os.makedirs(third_phase_output_path, exist_ok=True)
third_phase_logs_path = os.path.join(logs_dir, 'model_fitting')
os.makedirs(third_phase_logs_path, exist_ok=True)

module_parameters = [first_phase_output_path, second_phase_output_path, third_phase_output_path,
third_phase_logs_path, samplename2biologicalcondition_path, number_of_random_pssms,
third_phase_done_path, f'--shuffles_percent {shuffles_percent}', f'--shuffles_digits {shuffles_digits}',
f'--num_of_random_configurations_to_sample {num_of_random_configurations_to_sample}', f'--cv_num_of_splits {cv_num_of_splits}', f'--seed_random_forest {seed_random_forest}',
f'--rank_method {rank_method}', f'--error_path {error_path}',
'-v' if verbose else '', f'-q {queue}','-m' if use_mapitope else '']
third_phase_done_path, '--stop_before_random_forest' if stop_before_random_forest else '',
f'--num_of_random_configurations_to_sample {num_of_random_configurations_to_sample}',
f'--number_parallel_random_forest' {number_parallel_random_forest}, f'--min_value_error_random_forest' {min_value_error_random_forest},
f'--shuffles_percent {shuffles_percent}', f'--shuffles_digits {shuffles_digits}',
f'--cv_num_of_splits {cv_num_of_splits}', f'--seed_random_forest {seed_random_forest}',
f'--random_forest_seed_configurations {random_forest_seed_configurations}',f'--error_path {error_path}', '-v' if verbose else '',
f'-q {queue}','-m' if use_mapitope else '']

if rank_method == 'tfidf':
if tfidf_method:
module_parameters += ['--tfidf_method', tfidf_method]
Expand Down Expand Up @@ -185,7 +190,10 @@ def run_pipeline(fastq_path, barcode2samplename_path, samplename2biologicalcondi
help='How long should be the prefix that is taken from the clstr file (cd-hit max prefix is 20)')

# optional parameters for the modelling step
parser.add_argument('--stop_before_random_forest', action='store_true', help='A boolean flag for mark if we need to run the random forest')
parser.add_argument('--number_of_random_pssms', default=100, type=int, help='Number of pssm permutations')
parser.add_argument('--number_parallel_random_forest', default=20, type=int, help='How many random forest configurations to run in parallel')
parser.add_argument('--min_value_error_random_forest', default=0, type=float, help='A random forest model error value for convergence allowing to stop early')
parser.add_argument('--rank_method', choices=['pval', 'tfidf', 'shuffles'], default='pval', help='Motifs ranking method')
parser.add_argument('--tfidf_method', choices=['boolean', 'terms', 'log', 'augmented'], default='boolean', help='TF-IDF method')
parser.add_argument('--tfidf_factor', type=float, default=0.5, help='TF-IDF augmented method factor (0-1)')
Expand All @@ -194,8 +202,8 @@ def run_pipeline(fastq_path, barcode2samplename_path, samplename2biologicalcondi
parser.add_argument('--shuffles_digits', default=2, type=int, help='Number of digits after the point to print in scanning files.')
parser.add_argument('--num_of_random_configurations_to_sample', default=100, type=int, help='How many random configurations of hyperparameters should be sampled?')
parser.add_argument('--cv_num_of_splits', default=2, help='How folds should be in the cross validation process? (use 0 for leave one out)')
parser.add_argument('--seed_random_forest', default=42, help='Seed number for reconstructing experiments')

parser.add_argument('--seed_random_forest', default=42, help='Seed number for reconstructing experiments')
parser.add_argument('--random_forest_seed_configurations', default=123 , type=int, help='Random seed value for generating random forest configurations')
# general optional parameters
parser.add_argument('--run_summary_path', type=str,
help='a file in which the running configuration and timing will be written to')
Expand All @@ -219,11 +227,12 @@ def run_pipeline(fastq_path, barcode2samplename_path, samplename2biologicalcondi

run_pipeline(args.fastq_path, args.barcode2samplename_path, args.samplename2biologicalcondition_path,
args.analysis_dir.rstrip('/'), args.logs_dir.rstrip('/'),
args.left_construct, args.right_construct, args.max_mismatches_allowed, args.min_sequencing_quality, args.minimal_length_required, True if args.gz else False, True if args.rpm else False,
args.max_msas_per_sample, args.max_msas_per_bc,
args.max_number_of_cluster_members_per_sample, args.max_number_of_cluster_members_per_bc,
args.left_construct, args.right_construct, args.max_mismatches_allowed, args.min_sequencing_quality, args.minimal_length_required, args.gz, args.rpm,
args.max_msas_per_sample, args.max_msas_per_bc, args.max_number_of_cluster_members_per_sample, args.max_number_of_cluster_members_per_bc,
args.allowed_gap_frequency, args.threshold, args.word_length, args.discard, concurrent_cutoffs, args.meme_split_size,
args.mapitope, args.aln_cutoff, args.pcc_cutoff, args.skip_sample_merge_meme, args.minimal_number_of_columns_required_create_meme, args.prefix_length_in_clstr,
args.number_of_random_pssms, args.rank_method, args.tfidf_method, args.tfidf_factor, args.shuffles, args.shuffles_percent, args.shuffles_digits,
args.num_of_random_configurations_to_sample, args.cv_num_of_splits, args.seed_random_forest,
run_summary_path, error_path, args.queue, True if args.verbose else False, sys.argv)
args.stop_before_random_forest, args.number_of_random_pssms, args.number_parallel_random_forest, args.min_value_error_random_forest,
args.rank_method, args.tfidf_method, args.tfidf_factor, args.shuffles, args.shuffles_percent, args.shuffles_digits,
args.num_of_random_configurations_to_sample, args.cv_num_of_splits, args.seed_random_forest, args.random_forest_seed_configurations,
run_summary_path, error_path, args.queue, args.verbose, sys.argv)

117 changes: 64 additions & 53 deletions model_fitting/module_wraper.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,12 +19,13 @@ def repeat_items(list):
output.append(x)
return output


def build_classifier(first_phase_output_path, motif_inference_output_path,
classification_output_path, logs_dir, samplename2biologicalcondition_path,
fitting_done_path, number_of_random_pssms, rank_method, tfidf_method, tfidf_factor,
shuffles, shuffles_percent, shuffles_digits, num_of_random_configurations_to_sample, cv_num_of_splits, seed_random_forest,
queue_name, verbose, error_path, use_mapitope, argv):
classification_output_path, logs_dir, samplename2biologicalcondition_path, number_of_random_pssms,
fitting_done_path, stop_before_random_forest, num_of_random_configurations_to_sample,
number_parallel_random_forest, min_value_error_random_forest, rank_method, tfidf_method, tfidf_factor,
shuffles, shuffles_percent, shuffles_digits, cv_num_of_splits, random_forest_seed, random_forest_seed_configurations,
queue_name, verbose, error_path, use_mapitop, argv):

is_pval = rank_method == 'pval'
os.makedirs(classification_output_path, exist_ok=True)
os.makedirs(logs_dir, exist_ok=True)
Expand All @@ -43,7 +44,6 @@ def build_classifier(first_phase_output_path, motif_inference_output_path,
scanning_dir_path = os.path.join(bc_dir_path, 'scanning')
os.makedirs(scanning_dir_path, exist_ok=True)


# compute scanning scores (hits and values)
logger.info('_'*100)
logger.info(f'{datetime.datetime.now()}: scanning peptides vs motifs (hits and values)')
Expand Down Expand Up @@ -146,49 +146,55 @@ def build_classifier(first_phase_output_path, motif_inference_output_path,


# fitting a random forest model (hits and values)
logger.info('_'*100)
logger.info(f'{datetime.datetime.now()}: fitting model')
script_name = 'random_forest.py'
num_of_expected_results = 0
all_cmds_params = [] # a list of lists. Each sublist contain different parameters set for the same script to reduce the total number of jobs
for bc in biological_conditions:
aggregated_values_path = os.path.join(classification_output_path, bc, f'{bc}_values.csv')
pvalues_done_path = os.path.join(logs_dir, f'{bc}_values_done_fitting.txt')
aggregated_hits_path = os.path.join(classification_output_path, bc, f'{bc}_hits.csv')
hits_done_path = os.path.join(logs_dir, f'{bc}_hits_done_fitting.txt')

value_cmd = [aggregated_values_path, pvalues_done_path, f'--num_of_configurations_to_sample {num_of_random_configurations_to_sample}', f'--cv_num_of_splits {cv_num_of_splits}', f'--seed {seed_random_forest}']
hits_cmd = [aggregated_hits_path, hits_done_path, f'--num_of_configurations_to_sample {num_of_random_configurations_to_sample}', f'--cv_num_of_splits {cv_num_of_splits}', f'--seed {seed_random_forest}']
if rank_method == 'tfidf' or rank_method == 'shuffles':
value_cmd.append('--tfidf')
hits_cmd.append('--tfidf')

if not os.path.exists(pvalues_done_path):
all_cmds_params.append(value_cmd)
else:
logger.debug(f'Skipping fitting as {pvalues_done_path} found')
num_of_expected_results += 1

if not os.path.exists(hits_done_path):
all_cmds_params.append(hits_cmd)
if not stop_before_random_forest:
logger.info('_'*100)
logger.info(f'{datetime.datetime.now()}: fitting model')
script_name = 'random_forest.py'
num_of_expected_results = 0
all_cmds_params = [] # a list of lists. Each sublist contain different parameters set for the same script to reduce the total number of jobs
for bc in biological_conditions:
aggregated_values_path = os.path.join(classification_output_path, bc, f'{bc}_values.csv')
pvalues_done_path = os.path.join(logs_dir, f'{bc}_values_done_fitting.txt')
aggregated_hits_path = os.path.join(classification_output_path, bc, f'{bc}_hits.csv')
hits_done_path = os.path.join(logs_dir, f'{bc}_hits_done_fitting.txt')

value_cmd = [aggregated_values_path, pvalues_done_path, logs_dir, error_path, '--num_of_configurations_to_sample', num_of_random_configurations_to_sample, f'--cv_num_of_splits {cv_num_of_splits}'
'--number_parallel_random_forest', number_parallel_random_forest, '--min_value_error_random_forest', num_of_random_configurations_to_sample, '--random_forest_seed', random_forest_seed,
f'--random_forest_seed {random_forest_seed_configurations}']
hits_cmd = [aggregated_hits_path, hits_done_path, logs_dir, error_path, '--num_of_configurations_to_sample', num_of_configurations_to_sample, f'--cv_num_of_splits {cv_num_of_splits}'
'--number_parallel_random_forest', number_parallel_random_forest, '--min_value_error_random_forest', min_value_error_random_forest, '--random_forest_seed', random_forest_seed,
f'--random_forest_seed {random_forest_seed_configurations}']
if rank_method == 'tfidf' or rank_method == 'shuffles':
value_cmd.append('--tfidf')
hits_cmd.append('--tfidf')
if not os.path.exists(pvalues_done_path):
all_cmds_params.append(value_cmd)
else:
logger.debug(f'Skipping fitting as {pvalues_done_path} found')
num_of_expected_results += 1

if not os.path.exists(hits_done_path):
all_cmds_params.append(hits_cmd)
else:
logger.debug(f'Skipping fitting as {hits_done_path} found')
num_of_expected_results += 1

if len(all_cmds_params) > 0:
doubled_bc = repeat_items(biological_conditions)
for cmds_params, bc in zip(all_cmds_params, doubled_bc):
cmd = submit_pipeline_step(f'{src_dir}/model_fitting/{script_name}',
[cmds_params],
logs_dir, f'{bc}_model',
queue_name, verbose)
num_of_expected_results += 1 # a single job for each biological condition

wait_for_results(script_name, logs_dir, num_of_expected_results, example_cmd=cmd,
error_file_path=error_path, suffix='_done_fitting.txt')
else:
logger.debug(f'Skipping fitting as {hits_done_path} found')
num_of_expected_results += 1

if len(all_cmds_params) > 0:
doubled_bc = repeat_items(biological_conditions)
for cmds_params, bc in zip(all_cmds_params, doubled_bc):
cmd = submit_pipeline_step(f'{src_dir}/model_fitting/{script_name}',
[cmds_params],
logs_dir, f'{bc}_model',
queue_name, verbose)
num_of_expected_results += 1 # a single job for each biological condition

wait_for_results(script_name, logs_dir, num_of_expected_results, example_cmd=cmd,
error_file_path=error_path, suffix='_done_fitting.txt')
logger.info(f'Skipping fitting, all found')
else:
logger.info(f'Skipping fitting, all found')

print('stop before')
logger.info(f'Stop before random forest')

# TODO: fix this bug with a GENERAL WRAPPER done_path
# wait_for_results(script_name, num_of_expected_results)
Expand Down Expand Up @@ -218,15 +224,19 @@ def get_faa_file_name_from_path(path, use_mapitope):
parser.add_argument('number_of_random_pssms', default=100, type=int, help='Number of pssm permutations')
parser.add_argument('done_file_path', help='A path to a file that signals that the module finished running successfully.')

parser.add_argument('--stop_before_random_forest', action='store_true', help='A boolean flag for mark if we need to run the random forest')
parser.add_argument('--num_of_random_configurations_to_sample', default=100, type=int, help='How many random configurations of hyperparameters should be sampled?')
parser.add_argument('--number_parallel_random_forest', default=20, type=int, help='How many random forest configurations to run in parallel')
parser.add_argument('--min_value_error_random_forest', default=0, type=float, help='A random forest model error value for convergence allowing to stop early')
parser.add_argument('--rank_method', choices=['pval', 'tfidf', 'shuffles'], default='pval', help='Motifs ranking method')
parser.add_argument('--tfidf_method', choices=['boolean', 'terms', 'log', 'augmented'], default='boolean', help='TF-IDF method')
parser.add_argument('--tfidf_factor', type=float, default=0.5, help='TF-IDF augmented method factor (0-1)')
parser.add_argument('--shuffles', default=5, type=int, help='Number of controlled shuffles permutations')
parser.add_argument('--shuffles_percent', default=0.2, type=float, help='Percent from shuffle with greatest number of hits (0-1)')
parser.add_argument('--shuffles_digits', default=2, type=int, help='Number of digits after the point to print in scanning files.')
parser.add_argument('--num_of_random_configurations_to_sample', default=100, type=int, help='How many random configurations of hyperparameters should be sampled?')
parser.add_argument('--cv_num_of_splits', default=2, help='How folds should be in the cross validation process? (use 0 for leave one out)')
parser.add_argument('--seed_random_forest', default=42, help='Seed number for reconstructing experiments')
parser.add_argument('--random_forest_seed_configurations', default=123 , type=int, help='Random seed value for generating random forest configurations')
parser.add_argument('--error_path', type=str, help='a file in which errors will be written to')
parser.add_argument('-q', '--queue', default='pupkoweb', type=str, help='a queue to which the jobs will be submitted')
parser.add_argument('-v', '--verbose', action='store_true', help='Increase output verbosity')
Expand All @@ -243,8 +253,9 @@ def get_faa_file_name_from_path(path, use_mapitope):
error_path = args.error_path if args.error_path else os.path.join(args.parsed_fastq_results, 'error.txt')

build_classifier(args.parsed_fastq_results, args.motif_inference_results, args.classification_output_path,
args.logs_dir, args.samplename2biologicalcondition_path, args.done_file_path,
args.number_of_random_pssms, args.rank_method, args.tfidf_method, args.tfidf_factor,
args.shuffles, args.shuffles_percent, args.shuffles_digits, args.num_of_random_configurations_to_sample,
args.cv_num_of_splits, args.seed_random_forest, args.queue,
True if args.verbose else False, error_path, args.mapitope, sys.argv)
args.logs_dir, args.samplename2biologicalcondition_path, args.number_of_random_pssms, args.done_file_path,
args.stop_before_random_forest, args.num_of_random_configurations_to_sample,
args.number_parallel_random_forest, args.min_value_error_random_forest, args.rank_method,
args.tfidf_method, args.tfidf_factor, args.shuffles, args.shuffles_percent, args.shuffles_digits,
args.cv_num_of_splits, args.seed_random_forest, args.random_forest_seed_configurations,
args.queue, args.verbose, error_path, args.mapitope, sys.argv)
Loading