-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
161 lines (125 loc) · 6.65 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from copy import deepcopy
import torch
import torch.nn as nn
import torch.nn.functional as F
# feature extractor
from diffusion_net.layers import DiffusionNet
# maps block
from utils import get_mask, nn_interpolate
class RegularizedFMNet(nn.Module):
"""Compute the functional map matrix representation."""
def __init__(self, lambda_=1e-3, resolvant_gamma=0.5):
super().__init__()
self.lambda_ = lambda_
self.resolvant_gamma = resolvant_gamma
def forward(self, feat_x, feat_y, evals_x, evals_y, evecs_trans_x, evecs_trans_y):
# compute linear operator matrix representation C1 and C2
evecs_trans_x, evecs_trans_y = evecs_trans_x.unsqueeze(0), evecs_trans_y.unsqueeze(0)
evals_x, evals_y = evals_x.unsqueeze(0), evals_y.unsqueeze(0)
F_hat = torch.bmm(evecs_trans_x, feat_x)
G_hat = torch.bmm(evecs_trans_y, feat_y)
A, B = F_hat, G_hat
D = get_mask(evals_x.flatten(), evals_y.flatten(), self.resolvant_gamma, feat_x.device).unsqueeze(0)
A_t = A.transpose(1, 2)
A_A_t = torch.bmm(A, A_t)
B_A_t = torch.bmm(B, A_t)
C_i = []
for i in range(evals_x.size(1)):
D_i = torch.cat([torch.diag(D[bs, i, :].flatten()).unsqueeze(0) for bs in range(evals_x.size(0))], dim=0)
C = torch.bmm(torch.inverse(A_A_t + self.lambda_ * D_i), B_A_t[:, i, :].unsqueeze(1).transpose(1, 2))
C_i.append(C.transpose(1, 2))
C = torch.cat(C_i, dim=1)
return C
class RegularizedCFMNet(nn.Module):
"""Compute the complex functional map matrix representation."""
def __init__(self, lambda_=1e-3, resolvant_gamma=0.5):
super().__init__()
self.lambda_ = lambda_
self.resolvant_gamma = resolvant_gamma
def forward(self, feat_x, feat_y, spec_grad_x, spec_grad_y, cevals_x, cevals_y):
# compute linear operator matrix representation C1 and C2
cty = torch.complex128
spec_grad_x, spec_grad_y = spec_grad_x.unsqueeze(0), spec_grad_y.unsqueeze(0)
F_hat = torch.bmm(spec_grad_x, feat_x.type(cty))
G_hat = torch.bmm(spec_grad_y, feat_y.type(cty))
A, B = F_hat, G_hat
# if normalize input vector fields
# A, B = A/torch.abs(A), B/torch.abs(B)
if self.lambda_ == 0:
Q = (B @ torch.pinverse(A))
return Q
# else
cevals_x, cevals_y = cevals_x.unsqueeze(0), cevals_y.unsqueeze(0)
D = get_mask(cevals_x.flatten(), cevals_y.flatten(), self.resolvant_gamma, feat_x.device).unsqueeze(0)
A_t = torch.conj(A.transpose(1, 2))
A_A_t = torch.bmm(A, A_t)
B_A_t = torch.bmm(B, A_t)
Q_i = []
for i in range(cevals_x.size(1)):
D_i = torch.cat([torch.diag(D[bs, i, :].flatten()).unsqueeze(0) for bs in range(cevals_x.size(0))], dim=0)
Q = torch.bmm(torch.inverse(A_A_t + self.lambda_ * D_i),
torch.conj(B_A_t[:, i, :].unsqueeze(1).transpose(1, 2)))
Q_i.append(torch.conj(Q.transpose(1, 2)))
Q = torch.cat(Q_i, dim=1)
return Q
class DQFMNet(nn.Module):
"""
Compilation of the global model :
- diffusion net as feature extractor
- fmap + q-fmap
- unsupervised loss
"""
def __init__(self, cfg):
super().__init__()
# feature extractor #
with_grad=True
self.feature_extractor = DiffusionNet(
C_in=cfg["fmap"]["C_in"],
C_out=cfg["fmap"]["n_feat"],
C_width=128,
N_block=4,
dropout=True,
with_gradient_features=with_grad,
with_gradient_rotations=with_grad,
)
# regularized fmap
self.fmreg_net = RegularizedFMNet(lambda_=cfg["fmap"]["lambda_"],
resolvant_gamma=cfg["fmap"]["resolvant_gamma"])
self.cfmreg_net = RegularizedCFMNet(lambda_=cfg["fmap"]["lambda_"],
resolvant_gamma=cfg["fmap"]["resolvant_gamma"])
# parameters
self.n_fmap = cfg["fmap"]["n_fmap"]
self.n_cfmap = cfg["fmap"]["n_cfmap"]
self.robust = cfg["fmap"]["robust"]
def forward(self, batch):
verts1, faces1, mass1, L1, evals1, evecs1, gradX1, gradY1 = (batch["shape1"]["xyz"], batch["shape1"]["faces"],
batch["shape1"]["mass"], batch["shape1"]["L"],
batch["shape1"]["evals"], batch["shape1"]["evecs"],
batch["shape1"]["gradX"], batch["shape1"]["gradY"])
verts2, faces2, mass2, L2, evals2, evecs2, gradX2, gradY2 = (batch["shape2"]["xyz"], batch["shape2"]["faces"],
batch["shape2"]["mass"], batch["shape2"]["L"],
batch["shape2"]["evals"], batch["shape2"]["evecs"],
batch["shape2"]["gradX"], batch["shape2"]["gradY"])
# set features to vertices
features1, features2 = verts1, verts2
# print(features1.shape, features2.shape)
feat1 = self.feature_extractor(features1, mass1, L=L1, evals=evals1, evecs=evecs1,
gradX=gradX1, gradY=gradY1, faces=faces1).unsqueeze(0)
feat2 = self.feature_extractor(features2, mass2, L=L2, evals=evals2, evecs=evecs2,
gradX=gradX2, gradY=gradY2, faces=faces2).unsqueeze(0)
# predict fmap
evecs_trans1, evecs_trans2 = evecs1.t()[:self.n_fmap] @ torch.diag(mass1), evecs2.t()[:self.n_fmap] @ torch.diag(mass2)
evals1, evals2 = evals1[:self.n_fmap], evals2[:self.n_fmap]
#
C_pred = self.fmreg_net(feat1, feat2, evals1, evals2, evecs_trans1, evecs_trans2)
#
# if we don't have complex spectral info we just return C
if self.n_cfmap == 0:
return C_pred, None
# else, also predict cfmap
spec_grad1, spec_grad2 = batch["shape1"]["spec_grad"][:self.n_cfmap], batch["shape2"]["spec_grad"][:self.n_cfmap]
cevals1, cevals2 = batch["shape1"]["cevals"][:self.n_fmap], batch["shape2"]["cevals"][:self.n_fmap]
#
cfeat1, cfeat2 = feat1, feat2 # network features
Q_pred = self.cfmreg_net(cfeat1, cfeat2, spec_grad1, spec_grad2, cevals1, cevals2)
return C_pred, Q_pred